Hybride KI mit Machine Learning und Knowledge Graphs
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-44780-9 (ISBN)
- Noch nicht erschienen - erscheint am 03.02.2025
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Seit den 2010er Jahren hat die Künstliche Intelligenz (KI) durch Erfolge im Machine Learning (ML) einen enormen Schub erfahren. Einerseits durch die stark angewachsene Menge verfügbarer digitaler Daten und andererseits durch Innovationen im Bereich der Künstlichen Neuronalen Netze und des Deep Learning (DL). Wissensbasierte KI umfasst neben traditionellen Expertensystemen und Regelsystemen auch die Technologien und Standards, welche im Rahmen der Semantic Web Initiative seit den 1990er Jahren entwickelt wurden. Sie ermöglichten unter anderem die Entwicklung umfangreicher Knowledge Graphs (Wissensnetze). Hybride KI Ansätze kombinieren Machine Learning und wissensbasierte KI. Da sie als erfolgversprechend gelten, werden sie seit Jahren erforscht. Dieser Sammelband zeigt, wie innovative hybride KI-Verfahren bereits heute erfolgreich in der Praxis eingesetzt werden. Dies ist ein Open Access-Buch.
Knut Hinkelmann ist Professor für Wirtschaftsinformatik and der Fachhochschule Nordwestschweiz FHNW. Er leitet den Masterstudiengang Business Information Systems und die Forschungsgruppe Intelligent Information Systems.Thomas Hoppe ist Wissenschaftlicher Mitarbeiter und Projektmanager in der Arbeitsgruppe "Data Analytics Center" (DANA) des Fraunhofer-Instituts für Offene Kommunikationssysteme (FOKUS) und Dozent für Datenbanken, Informationssysteme, Suchtechnologie und Bayes'sche Datenanalyse im Studiengang "Angewandte Informatik" der Hochschule für Technik und Wirtschaft Berlin - University of Applied SciencesBernhard G. Humm ist Professor für Software Engineering am Fachbereich Informatik der der Hochschule Darmstadt. Seit über 35 Jahren beschäftigt er sich mit KI und führt regelmäßig nationale und internationale KI-Forschungsprojekte mit Partnern aus Industrie und Wissenschaft durch.
Vorwort der Herausgeber.- Geleitwort.- Einführung in hybride Künstliche Intelligenz.-Unterstützung klinischer Studien mit hybrider KI.- Retrospektives Klassifizieren und Annotieren von Geschäftsdokumenten im Tagesgeschäft der Denkmalbehörden.- Text-getriebener Aufbau von domänenspezifischen Wissensgraphen mit neuronalen Netzen.- Das Projekt OdeNet: Aufbau eines semantischen Netzes für die deutsche Sprache.- Integration von terminologischen Wissen in eine Word-Embedding-basierende Semantische Suche.- Vorhersage von landwirtschaftlichen Erträgen und Wachstum.- Ontologie-basiertes AutoML.- Ermittlung elektiver Risikopatienten mittels Bayes'scher Netze.- Transfer-Lernen für die Klassifikation medizinischer Texte.- Anomalie-Detektion in der verarbeitenden Industrie.- Vorhersage von Sportergebnissen mittels probabilistischer Programmierung.- Hybrides wissensbasiertes Reasoning für wissensintensive Prozesse am Beispiel von Notrufabfragen.- Optimierung der Entscheidungsfindung in autonomenFahrsystemen mit neuro-symbolischem Wissen.- Wissensgraphen und Maschinelles Lernen im Spannungsfeld juristischer Sprache.-Kosteneffiziente Rekognition durch Out-Of-The-Box KI und Semantik.- Interaktive Entscheidungsfindung unter Einsatz von maschinellem Lernen und regelbasierten Systemen.
Erscheint lt. Verlag | 3.2.2025 |
---|---|
Zusatzinfo | Etwa 260 S. 70 Abb. |
Verlagsort | Wiesbaden |
Sprache | deutsch |
Maße | 168 x 240 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | AI • Artificial Intelligence • Hybride KI • KI • knowledge graphs • Künstliche Intelligenz • machine learning • Ontologien • open access • Semantische Technologien • Wissensbasierte KI • Wissensgraphen • Wissensnetze |
ISBN-10 | 3-658-44780-X / 365844780X |
ISBN-13 | 978-3-658-44780-9 / 9783658447809 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich