Classification of $/mathcal {O}_/infty $-Stable $C^*$-Algebras - James Gabe

Classification of $/mathcal {O}_/infty $-Stable $C^*$-Algebras

(Autor)

Buch | Softcover
115 Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-6793-7 (ISBN)
98,20 inkl. MwSt
Present a proof of Kirchberg's classification theorem: two separable, nuclear, $/mathcal {O}_/infty $-Stable $C^*$-algebras are stably isomorphic if and only if they are idealrelated KK-equivalent. In particular, this provides a more elementary proof of the Kirchberg–Phillips theorem which is isolated in the paper to increase readability of this important special case.

James Gabe, University of Southern Denmark, Odense, Denmark.

Chapters
1. Introduction and main results
2. Equivalence of $/ast $-homomorphisms
3. Approximate domination and nuclearity
4. $/mathcal O_2$-stable and $/mathcal O_/infty $-stable $/ast $-homomorphisms
5. Absorbing representations
6. Asymptotic intertwining
7. A unitary path and some key lemmas
8. The Kirchberg-Phillips Theorem
9. Strongly $/mathcal O_/infty $-stable $/ast $-homomorphisms
10. Ideals and actions of topological spaces
11. Absorbing representations revisited
12. Ideal-related $KK$-theory
13. A stable uniqueness theorem
14. An ideal-related $/mathcal O_2$-embedding theorem
15. The main theorems

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society ; Volume: 293 Number: 1461
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 272 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4704-6793-3 / 1470467933
ISBN-13 978-1-4704-6793-7 / 9781470467937
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99