Two-dimensional Product-cubic Systems, Vol.II - Albert C. J. Luo

Two-dimensional Product-cubic Systems, Vol.II

Product-quadratic Vector Fields
Buch | Hardcover
VII, 270 Seiten
2024
Springer International Publishing (Verlag)
978-3-031-57115-2 (ISBN)
171,19 inkl. MwSt

This book, the sixth of 15 related monographs, discusses singularity and networks of equilibriums and 1-diemsnional flows in product quadratic and cubic systems. The author explains how, in the networks, equilibriums have source, sink and saddles with counter-clockwise and clockwise centers and positive and negative saddles, and the 1-dimensional flows includes source and sink flows, parabola flows with hyperbolic and hyperbolic-secant flows. He further describes how the singular equilibriums are saddle-source (sink) and parabola-saddles for the appearing bifurcations, and the 1-dimensional singular flows are the hyperbolic-to-hyperbolic-secant flows and inflection source (sink) flows for 1-dimensional flow appearing bifurcations, and the switching bifurcations are based on the infinite-equilibriums, including inflection-source (sink), parabola-source (sink), up-down and down-up upper-saddle (lower-saddle), up-down (down-up) sink-to-source and source-to-sink, hyperbolic and hyperbolic-secant saddles. The diagonal-inflection upper-saddle and lower-saddle infinite-equilibriums are for the double switching bifurcations. The networks of hyperbolic flows with connected saddle, source and center are presented, and the networks of the hyperbolic flows with paralleled saddle and center are also illustrated. Readers will learn new concepts, theory, phenomena, and analysis techniques.

  • Product-quadratic and product cubic systems
  • Self-linear and crossing-quadratic product vector fields
  • Self-quadratic and crossing-linear product vector fields
  • Hybrid networks of equilibriums and 1-dimensional flows
  • Up-down and down-up saddle infinite-equilibriums
  • Up-down and down-up sink-to-source infinite-equilibriums
  • Inflection-source (sink) Infinite-equilibriums 
  • Diagonal inflection saddle infinite-equilibriums
  • Infinite-equilibrium switching bifurcations

Dr. Albert C. J. Luo is Distinguished Research Professor in the Department of Mechanical Engineering, Southern Illinois University Edwardsville, Edwardsville, IL.


 

 


Constant and Crossing-cubic Vector Fields.- Self-linear and Crossing-cubic Vector Fields.- Self-quadratic and Crossing-cubic Vector Fields.

Erscheinungsdatum
Zusatzinfo X, 101 p. 33 illus., 32 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte 1-dimensional flow singularity and bifurcations • Constant and crossing-cubic systems • Self-linear and crossing-cubic systems • Self-quadratic and crossing-cubic systems • Third-order parabola and inflection flows
ISBN-10 3-031-57115-0 / 3031571150
ISBN-13 978-3-031-57115-2 / 9783031571152
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95