Deep Learning with MXNet Cookbook (eBook)

Discover an extensive collection of recipes for creating and implementing AI models on MXNet
eBook Download: EPUB
2023
370 Seiten
Packt Publishing (Verlag)
978-1-80056-290-5 (ISBN)

Lese- und Medienproben

Deep Learning with MXNet Cookbook - Andrés P. Torres
Systemvoraussetzungen
35,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Explore the capabilities of the open-source deep learning framework MXNet to train and deploy neural network models and implement state-of-the-art (SOTA) architectures in Computer Vision, natural language processing, and more. The Deep Learning with MXNet Cookbook is your gateway to constructing fast and scalable deep learning solutions using Apache MXNet.
Starting with the different versions of MXNet, this book helps you choose the optimal version for your use and install your library. You'll work with MXNet/Gluon libraries to solve classification and regression problems and gain insights into their inner workings. Venturing further, you'll use MXNet to analyze toy datasets in the areas of numerical regression, data classification, picture classification, and text classification. From building and training deep-learning neural network architectures from scratch to delving into advanced concepts such as transfer learning, this book covers it all. You'll master the construction and deployment of neural network architectures, including CNN, RNN, LSTMs, and Transformers, and integrate these models into your applications.
By the end of this deep learning book, you'll wield the MXNet and Gluon libraries to expertly create and train deep learning networks using GPUs and deploy them in different environments.


Gain practical, recipe-based insights into the world of deep learning using Apache MXNet for flexible and efficient research prototyping, training, and deployment to production.Key FeaturesA step-by-step tutorial towards using MXNet products to create scalable deep learning applicationsImplement tasks such as transfer learning, transformers, and more with the required speed and scalabilityAnalyze the performance of models and fine-tune them for accuracy, scalability, and speedBook DescriptionMXNet is an open-source deep learning framework that allows you to train and deploy neural network models and implement state-of-the-art (SOTA) architectures in CV, NLP, and more. With this cookbook, you will be able to construct fast, scalable deep learning solutions using Apache MXNet. This book will start by showing you the different versions of MXNet and what version to choose before installing your library. You will learn to start using MXNet/Gluon libraries to solve classification and regression problems and get an idea on the inner workings of these libraries. This book will also show how to use MXNet to analyze toy datasets in the areas of numerical regression, data classification, picture classification, and text classification. You'll also learn to build and train deep-learning neural network architectures from scratch, before moving on to complex concepts like transfer learning. You'll learn to construct and deploy neural network architectures including CNN, RNN, LSTMs, Transformers, and integrate these models into your applications. By the end of the book, you will be able to utilize the MXNet and Gluon libraries to create and train deep learning networks using GPUs and learn how to deploy them efficiently in different environments.What you will learnUnderstand MXNet and Gluon libraries and their advantagesBuild and train network models from scratch using MXNetApply transfer learning for more complex, fine-tuned network architecturesSolve modern Computer Vision and NLP problems using neural network techniquesTrain and evaluate models using GPUs and learn how to deploy themExplore state-of-the-art models with GPUs and leveraging modern optimization techniquesImprove inference run-times and deploy models in productionWho this book is forThis book is ideal for Data scientists, machine learning engineers, and developers who want to work with Apache MXNet for building fast, scalable deep learning solutions. The reader is expected to have a good understanding of Python programming and a working environment with Python 3.6+. A good theoretical understanding of mathematics for deep learning will be beneficial.]]>
Erscheint lt. Verlag 29.12.2023
Vorwort Paul Newman
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80056-290-X / 180056290X
ISBN-13 978-1-80056-290-5 / 9781800562905
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68