Applied Multivariate Statistics with R - Daniel Zelterman

Applied Multivariate Statistics with R

Buch | Softcover
XIX, 463 Seiten
2024 | 2nd ed. 2022
Springer International Publishing (Verlag)
978-3-031-13007-6 (ISBN)
69,54 inkl. MwSt

Now in its second edition, this book brings multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source shareware program R, Dr. Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays; linear algebra; univariate, bivariate and multivariate normal distributions; factor methods; linear regression; discrimination and classification; clustering; time series models; and additional methods. He uses practical examples from diverse disciplines, to welcome readers from a variety of academic specialties. Each chapter includes exercises, real data sets, and R implementations. The book avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary.

New to this edition are chapters devoted to longitudinal studies and theclustering of large data. It is an excellent resource for students of multivariate statistics, as well as practitioners in the health and life sciences who are looking to integrate statistics into their work.

Daniel Zelterman is professor in the department of biostatistics at Yale University. His research areas include computational statistics, models for discrete valued data, and the design of clinical trials in cancer studies. In his spare time he plays oboe and bassoon in amateur orchestral groups and has backpacked hundreds of miles of the Appalachian Trail.

Chapter 1. Introduction.- Chapter 2. Elements of R.- Chapter 3. Graphical Displays.- Chapter 4. Basic Linear Algebra.- Chapter 5. The Univariate Normal Distribution.- Chapter 6. Bivariate Normal Distribution.- Chapter 7. Multivariate Normal Distribution.- Chapter 8. Factor Methods.- Chapter 9. Multivariate Linear Regression.- Chapter 10. Discrimination and Classification.- Chapter 11. Clustering Methods.- Chapter 12. Basic Models for Longitudinal Data.- Chapter 13. Time Series Models.- Chapter 14. Other Useful Methods.

Erscheinungsdatum
Reihe/Serie Statistics for Biology and Health
Zusatzinfo XIX, 463 p. 172 illus., 158 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 735 g
Themenwelt Informatik Weitere Themen Bioinformatik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Schlagworte Clustering • factor methods • graphical displays • linear algebra • linear regression • Longitudinal Studies • matrix algebra biostatistics • Normal distribution • R software • Statistical Inference for Biology • time series models
ISBN-10 3-031-13007-3 / 3031130073
ISBN-13 978-3-031-13007-6 / 9783031130076
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich