Machine Learning and Data Mining for Computer Security
Methods and Applications
Seiten
2005
Springer London Ltd (Verlag)
978-1-84628-029-0 (ISBN)
Springer London Ltd (Verlag)
978-1-84628-029-0 (ISBN)
"Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security.
The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables.
This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.
The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables.
This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.
Survey Contributions.- An Introduction to Information Assurance.- Some Basic Concept of Machine Learning and Data Mining.- Research Contributions.- Learning to Detect Malicious Executables.- Data Mining Applied to Intrusion Detection: MITRE Experiences.- Intrusion Detection Alarm Clustering.- Behavioral Features for Network Anomaly Detection.- Cost-Sensitive Modeling for Intrusion Detection.- Data Cleaning and Enriched Representations for Anomaly Detection in System Calls.- A Decision-Theoritic, Semi-Supervised Model for Intrusion Detection.
Erscheint lt. Verlag | 10.10.2005 |
---|---|
Reihe/Serie | Advanced Information and Knowledge Processing |
Zusatzinfo | XVI, 210 p. |
Verlagsort | England |
Sprache | englisch |
Maße | 156 x 235 mm |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Informatik ► Theorie / Studium ► Kryptologie | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-10 | 1-84628-029-X / 184628029X |
ISBN-13 | 978-1-84628-029-0 / 9781846280290 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
44,90 €