The Deep Learning Architect's Handbook (eBook)

Build and deploy production-ready DL solutions leveraging the latest Python techniques

(Autor)

eBook Download: EPUB
2023
516 Seiten
Packt Publishing (Verlag)
978-1-80323-534-9 (ISBN)

Lese- und Medienproben

The Deep Learning Architect's Handbook - Ee Kin Chin
Systemvoraussetzungen
38,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Deep learning enables previously unattainable feats in automation, but extracting real-world business value from it is a daunting task. This book will teach you how to build complex deep learning models and gain intuition for structuring your data to accomplish your deep learning objectives.
This deep learning book explores every aspect of the deep learning life cycle, from planning and data preparation to model deployment and governance, using real-world scenarios that will take you through creating, deploying, and managing advanced solutions. You'll also learn how to work with image, audio, text, and video data using deep learning architectures, as well as optimize and evaluate your deep learning models objectively to address issues such as bias, fairness, adversarial attacks, and model transparency.
As you progress, you'll harness the power of AI platforms to streamline the deep learning life cycle and leverage Python libraries and frameworks such as PyTorch, ONNX, Catalyst, MLFlow, Captum, Nvidia Triton, Prometheus, and Grafana to execute efficient deep learning architectures, optimize model performance, and streamline the deployment processes. You'll also discover the transformative potential of large language models (LLMs) for a wide array of applications.
By the end of this book, you'll have mastered deep learning techniques to unlock its full potential for your endeavors.


Harness the power of deep learning to drive productivity and efficiency using this practical guide covering techniques and best practices for the entire deep learning life cycleKey FeaturesInterpret your models' decision-making process, ensuring transparency and trust in your AI-powered solutionsGain hands-on experience in every step of the deep learning life cycleExplore case studies and solutions for deploying DL models while addressing scalability, data drift, and ethical considerationsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionDeep learning enables previously unattainable feats in automation, but extracting real-world business value from it is a daunting task. This book will teach you how to build complex deep learning models and gain intuition for structuring your data to accomplish your deep learning objectives. This deep learning book explores every aspect of the deep learning life cycle, from planning and data preparation to model deployment and governance, using real-world scenarios that will take you through creating, deploying, and managing advanced solutions. You ll also learn how to work with image, audio, text, and video data using deep learning architectures, as well as optimize and evaluate your deep learning models objectively to address issues such as bias, fairness, adversarial attacks, and model transparency. As you progress, you ll harness the power of AI platforms to streamline the deep learning life cycle and leverage Python libraries and frameworks such as PyTorch, ONNX, Catalyst, MLFlow, Captum, Nvidia Triton, Prometheus, and Grafana to execute efficient deep learning architectures, optimize model performance, and streamline the deployment processes. You ll also discover the transformative potential of large language models (LLMs) for a wide array of applications. By the end of this book, you'll have mastered deep learning techniques to unlock its full potential for your endeavors.What you will learnUse neural architecture search (NAS) to automate the design of artificial neural networks (ANNs)Implement recurrent neural networks (RNNs), convolutional neural networks (CNNs), BERT, transformers, and more to build your modelDeal with multi-modal data drift in a production environmentEvaluate the quality and bias of your modelsExplore techniques to protect your model from adversarial attacksGet to grips with deploying a model with DataRobot AutoMLWho this book is forThis book is for deep learning practitioners, data scientists, and machine learning developers who want to explore deep learning architectures to solve complex business problems. Professionals in the broader deep learning and AI space will also benefit from the insights provided, applicable across a variety of business use cases. Working knowledge of Python programming and a basic understanding of deep learning techniques is needed to get started with this book.]]>
Erscheint lt. Verlag 29.12.2023
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Web / Internet
ISBN-10 1-80323-534-9 / 1803235349
ISBN-13 978-1-80323-534-9 / 9781803235349
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 14,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Das umfassende Lehrbuch

von Michael Kofler

eBook Download (2024)
Rheinwerk Computing (Verlag)
34,93