Um unsere Webseiten für Sie optimal zu gestalten und fortlaufend zu verbessern, verwenden wir Cookies. Durch Bestätigen des Buttons »Akzeptieren« stimmen Sie der Verwendung zu. Über den Button »Einstellungen« können Sie auswählen, welche Cookies Sie zulassen wollen.

AkzeptierenEinstellungen
Principal Component Neural Networks - K. I. Diamantaras, S. Y. Kung

Principal Component Neural Networks

Theory and Applications
Buch | Hardcover
272 Seiten
1996
Wiley-Interscience (Verlag)
978-0-471-05436-8 (ISBN)
196,83 inkl. MwSt
Studibuch Logo

...gebraucht verfügbar!

Systematically explores the relationship between principal component analysis (PCA) and neural networks. Provides a synergistic examination of the mathematical, algorithmic, application and architectural aspects of principal component neural networks. Using a unified formulation, the authors present neural models performing PCA from the Hebbian learning rule and those which use least squares learning rules such as back-propagation. Examines the principles of biological perceptual systems to explain how the brain works. Every chapter contains a selected list of applications examples from diverse areas.

K. I. Diamantaras is a research scientist at Aristotle University in Thessaloniki, Greece. He received his PhD from Princeton University and was formerly a research scientist for Siemans Corporate Research. S. Y. Kung is Professor of Electrical Engineering at Princeton University and received his PhD from Stanford University. He was formerly a professor of electrical engineering at the University of Southern California.

A Review of Linear Algebra.

Principal Component Analysis.

PCA Neural Networks.

Channel Noise and Hidden Units.

Heteroassociative Models.

Signal Enhancement Against Noise.

VLSI Implementation.

Appendices.

Bibliography.

Index.

Erscheint lt. Verlag 4.4.1996
Reihe/Serie Adaptive and Learning Systems for Systems for Signal Processing, Communications, and Control Series
Sprache englisch
Maße 161 x 241 mm
Gewicht 567 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
ISBN-10 0-471-05436-4 / 0471054364
ISBN-13 978-0-471-05436-8 / 9780471054368
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich