Um unsere Webseiten für Sie optimal zu gestalten und fortlaufend zu verbessern, verwenden wir Cookies. Durch Bestätigen des Buttons »Akzeptieren« stimmen Sie der Verwendung zu. Über den Button »Einstellungen« können Sie auswählen, welche Cookies Sie zulassen wollen.

AkzeptierenEinstellungen
Theory of Elastic Wave Propagation and its Application to Scattering Problems - Terumi Touhei

Theory of Elastic Wave Propagation and its Application to Scattering Problems

(Autor)

Buch | Hardcover
264 Seiten
2024
CRC Press (Verlag)
978-1-032-17077-0 (ISBN)
105,95 inkl. MwSt
Elastic wave propagation applies widely across engineering. This presents continuum mechanics, stress and strain tensors, and the derivation of equations for elastic wave motions with Green’s function. The MUSIC algorithm is used to address inverse scattering problems, and the companion website provides software with detailed solutions.
Elastic wave propagation applies to a wide variety of fields, including seismology, non-destructive testing, energy resource exploration, and site characterization. New applications for elastic waves are still being discovered. Theory of Elastic Wave Propagation and its Application to Scattering Problems starts from the standpoint of continuum mechanics, explaining stress and strain tensors in terms of mathematics and physics, and showing the derivation of equations for elastic wave motions, to give readers a stronger foundation. It emphasizes the importance of Green’s function for applications of the elastic wave equation to practical engineering problems and covers elastic wave propagation in a half-space, in addition to the spectral representation of Green’s function. Finally, the MUSIC algorithm is used to address inverse scattering problems.



Offers comprehensive coverage of fundamental concepts through to contemporary applications of elastic wave propagation
Bridges the gap between theoretical principles and practical engineering solutions

The book’s website provides the author’s software for analyzing elastic wave propagations, along with detailed answers to the problems presented, to suit graduate students across engineering and applied mathematics.

Terumi Touhei is a Professor at the Tokyo University of Science, with extensive experience of teaching graduate students.

1. Introduction. 2. Basic properties of solution for elastic wave equation and representation theorem. 3. Elastic wave propagation in 3D elastic half-space. 4. Analysis of scattering problems by means of Green's functions. Appendix A. Tensor algebra for continuum mechanics. Appendix B. Fourier transform, Fourier-Hankel transform, and Dirac delta function. Appendix C. Green's function in the wavenumber domain. Appendix D. Comparison of Green's function obtained using various computational methods. Appendix E. Music algorithm for detecting location of point-like scatters. Answers. References.

Erscheinungsdatum
Zusatzinfo 9 Tables, black and white; 80 Line drawings, black and white; 80 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 684 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Geowissenschaften Geophysik
Naturwissenschaften Physik / Astronomie Mechanik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
ISBN-10 1-032-17077-8 / 1032170778
ISBN-13 978-1-032-17077-0 / 9781032170770
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36