Machine Learning for Astrophysics (eBook)

Proceedings of the ML4Astro International Conference 30 May - 1 Jun 2022
eBook Download: PDF
2023
XIV, 211 Seiten
Springer International Publishing (Verlag)
978-3-031-34167-0 (ISBN)

Lese- und Medienproben

Machine Learning for Astrophysics -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book reviews the state of the art in the exploitation of machine learning techniques for the astrophysics community and gives the reader a complete overview of the field. The contributed chapters allow the reader to easily digest the material through balanced theoretical and numerical methods and tools with applications in different fields of theoretical and observational astronomy. The book helps the reader to really understand and quantify both the opportunities and limitations of using machine learning in several fields of astrophysics.



Filomena Bufano (Ph.D. in Astronomy) has been a research staff scientist at Istituto Nazionale di Astrofisica (INAF) since 2016. Her scientific interests have been mainly focused on the study of massive stars evolution, in particular on their final stages. Promoting a multi-wavelength approach in her studies, she worked using data from different telescopes/surveys from UV to radio frequencies and has been a member of numerous international collaborations and projects. In view of the approaching era of a deluge of data expected from new ground and space-based facilities, she acquired deep skills in the use of machine learning algorithms: since -2017 she has been engaged in two important European projects, i.e. ViaLactea and the ongoing NEANIAS project (sponsor of the conference, too). Nowadays, she is involved in the preliminary activities of the Square Kilometre Array focussed on the Galactic Plane and in the Early Science Data Analysis phase of two important pathfinder/precursor of SKA: ASKAP and MeerKAT.

Eva Sciacca (Ph.D. in Mathematics for Technology) is a Computer Scientist and Information Technology researcher with over a decade of experience, working at the Istituto Nazionale di Astrofisica (INAF) since 2012. She has been extensively involved in cutting-edge research activities in the field of big-data, visual analytics, and machine learning. She has been instrumental in facilitating astrophysical data processing on distributed computing infrastructures, with a special focus on High-Performance Computing (HPC) and Cloud Computing. Over the past five years, Eva has played a pivotal role in several European-funded projects, including VIALACTEA, INDIGO-DataCloud, AENEAS, EOSC-Pilot, NEANIAS, and SPACE. She has been at the forefront of harnessing the potential of the European Open Science Cloud (EOSC) and the European High-Performance Computing Joint Undertaking (EuroHPC JU) to advance scientific research, and she is actively involved in the IT activities of the Square Kilometre Array (SKA) Regional Centres.

Francesco Schilliro is a signal processing engineer skilled in algorithm and instrumentation for radio astronomy, working at the Istituto Nazionale di Astrofisica (INAF) since 2000. He started working at the Noto VLBI Antenna , where he was also involved in the design of radio astronomy antenna control system software and devices. Both experiences were important for his activity as digital engineer and designer for SKA post-processing equipment, in particular for the design and prototyping of Tile Processor Module of Low-Frequency Aperture Array component of SKA. His experience as software architect for radio astronomy control system was improved by working as software Architect for the SKA Dish Consortium and in particular for control and monitoring the SKA antennas.
Currently he is involved in AI research involving the application of Machine Learning and Deep Learning algorithms to heterogeneous hardware, processing data coming from SKA precursors (Meerkat, ASKAP). Recent activity involves quantum computing algorithms and application to astrophysical items.  

Simone Riggi (Ph.D. Physics) has been a Research Data Scientist at the Istituto Nazionale di Astrofisica (INAF) since 2012. His work has primarily focused on scientific data analysis and visualization, machine learning, distributed computing, instrumentation simulation, monitoring and control, and system engineering. He has contributed to large research and technological projects in the fields of radio astronomy, high-energy cosmic rays, and applied physics, such as the Pierre Auger Observatory experiment, the Muon Portal project, and various European H2020 projects (AENEAS, NEANIAS). Currently, he is involved in the design and construction phase of the Square Kilometer Array (SKA) telescope and in the Galactic science programs carried out within the ASKAP-EMU and MeerKAT-GPS surveys. In these contexts, he is responsible for the monitoring and control system of SKA-Mid antennas and for developing radio source analysis tools using machine learning techniques and multi-wavelength data.


Erscheint lt. Verlag 14.10.2023
Reihe/Serie Astrophysics and Space Science Proceedings
Astrophysics and Space Science Proceedings
Zusatzinfo XIV, 211 p. 52 illus., 47 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Schlagworte anomaly discovery in data • Data Mining • Deep learning • machine learning techniques • radioastronomy data • software tools for machine learning • Square Kilometer Array, SKA • time series in astronomy and astrophysics
ISBN-10 3-031-34167-8 / 3031341678
ISBN-13 978-3-031-34167-0 / 9783031341670
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43