Tropical and Logarithmic Methods in Enumerative Geometry - Renzo Cavalieri, Hannah Markwig, Dhruv Ranganathan

Tropical and Logarithmic Methods in Enumerative Geometry

Buch | Softcover
XIV, 159 Seiten
2023 | 1st ed. 2023
Springer International Publishing (Verlag)
978-3-031-39400-3 (ISBN)
58,84 inkl. MwSt
This book is based on the lectures given at the Oberwolfach Seminar held in Fall 2021. Logarithmic Gromov-Witten theory lies at the heart of modern approaches to mirror symmetry, but also opens up a number of new directions in enumerative geometry of a more classical flavour. Tropical geometry forms the calculus through which calculations in this subject are carried out. These notes cover the foundational aspects of this tropical calculus, geometric aspects of the degeneration formula for Gromov-Witten invariants, and the practical nuances of working with and enumerating tropical curves. Readers will get an assisted entry route to the subject, focusing on examples and explicit calculations.

lt;b> Renzo Cavalieri completed his PhD at University of Utah in 2005 under the direction of Aaron Bertram. He was a postdoc at University of Michigan under the mentorship of Bill Fulton for the following three years. In 2008, he became faculty at Colorado State University where he is currently a professor in the department of mathematics.
Hannah Markwig completed her PhD in 2006 at the University of Kaiserslautern in Germany, advised by Andreas Gathmann. She was a Postdoc at the Institute of Mathematics and its Applications in Minneapolis and at the University of Michigan in Ann Arbor, before she started a Juniorprofessorship at the University of Göttingen in 2008. In 2011, she moved to the University of the Saarland as a Professor, and in 2016 to the University of Tübingen.
Dhruv Ranganathan completed his PhD at Yale University in 2016 under the direction of Sam Payne. He was a CLE Moore Instructor at MIT and a member at the Institute for Advanced Study in 2017. Since 2019, he has been at the University of Cambridge, where he is currently a professor of mathematics.
The authors have worked together since 2013, on several projects related to the themes discussed in this book. They have taught several courses, including at MSRI, Stockholm, and of course in Oberwolfach. In addition to their shared love of mathematics, the authors enjoy hiking, cooking, music, and the life-altering card game known as "tichu".

Part I: Toric Geometry and Logarithmic Curve Counting. - 1. Geometry of Toric Varieties. - 2. Compactifying Subvarieties of Tori. - 3. Points on the Riemann Sphere. - 4. Stable Maps and Logarithmic Stable Maps. - 5. Cheat Codes for Logarithmic GW Theory. - Part II: Hurwitz Theory. - 6. Classical Hurwitz Theory and Moduli Spaces. - 7. Tropical Hurwitz Theory. - 8. Hurwitz Numbers from Piecewise Polynomials. - Part III: Tropical Plane Curve Counting. - 9. Introduction to Plane Tropical Curve Counts. - 10. Lattice Paths and the Caporaso-Harris Formula. - 11. The Caporaso-Harris Formula for Tropical Plane Curves and Floor Diagrams.

Erscheinungsdatum
Reihe/Serie Oberwolfach Seminars
Zusatzinfo XIV, 159 p. 45 illus., 11 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 168 x 240 mm
Gewicht 308 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Caporaso-Harris Recursion • Correspondence Theorems • ELSV-Formula • enumerative geometry • Gromov-Witten Theory • Hurwitz Theory • Logarithmic Geometry • moduli spaces • Toric Varieties • Tropical Compactifications • tropical geometry
ISBN-10 3-031-39400-3 / 3031394003
ISBN-13 978-3-031-39400-3 / 9783031394003
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95