Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations
Seiten
2023
Würzburg University Press (Verlag)
978-3-95826-210-2 (ISBN)
Würzburg University Press (Verlag)
978-3-95826-210-2 (ISBN)
In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions.
In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.
In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.
geboren in Kfarremman, Libanon, M.Sc. (Mathematik)
Erscheint lt. Verlag | 9.5.2023 |
---|---|
Verlagsort | Würzburg |
Sprache | englisch |
Maße | 170 x 240 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | Angewandte Mathematik • Euler-Lagrange-Gleichung • Hyperbolische Differentialgleichung • Kinetische Gleichung • Magnetohydrodynamische Gleichung |
ISBN-10 | 3-95826-210-4 / 3958262104 |
ISBN-13 | 978-3-95826-210-2 / 9783958262102 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €