Crystallographic Texture and Group Representations (eBook)
XV, 430 Seiten
Springer Netherlands (Verlag)
978-94-024-2158-3 (ISBN)
This book starts with an introduction to quantitative texture analysis (QTA), which adopts conventions (active rotations, definition of Euler angles, Wigner D-functions) that conform to those of the present-day mathematics and physics literature. Basic concepts (e.g., orientation; orientation distribution function (ODF), orientation density function, and their relationship) are made precise through their mathematical definition. Parts II and III delve deeper into the mathematical foundations of QTA, where the important role played by group representations is emphasized. Part II includes one chapter on generalized QTA based on the orthogonal group, and Part III one on tensorial Fourier expansion of the ODF and tensorial texture coefficients.
This work will appeal to students and practitioners who appreciate a precise presentation of QTA through a unifying mathematical language, and to researchers who are interested in applications of group representations to texture analysis.
Previously published in the Journal of Elasticity, Volume 149, issues 1-2, April, 2022
This book starts with an introduction to quantitative texture analysis (QTA), which adopts conventions (active rotations, definition of Euler angles, Wigner D-functions) that conform to those of the present-day mathematics and physics literature. Basic concepts (e.g., orientation; orientation distribution function (ODF), orientation density function, and their relationship) are made precise through their mathematical definition. Parts II and III delve deeper into the mathematical foundations of QTA, where the important role played by group representations is emphasized. Part II includes one chapter on generalized QTA based on the orthogonal group, and Part III one on tensorial Fourier expansion of the ODF and tensorial texture coefficients. This work will appeal to students and practitioners who appreciate a precise presentation of QTA through a unifying mathematical language, and to researchers who are interested in applications of group representations to texture analysis. Previously published in the Journal of Elasticity, Volume 149, issues 1-2, April, 2022
Erscheint lt. Verlag | 13.1.2023 |
---|---|
Zusatzinfo | XV, 430 p. 4 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Technik ► Maschinenbau | |
Schlagworte | Harmonic decomposition • Harmonic tensors • orientation distribution function • Orientation measure • Orientation space • orthogonal group • Quantitative texture analysis • Rotations • Tensorial texture coefficients • Wigner D-functions |
ISBN-10 | 94-024-2158-0 / 9402421580 |
ISBN-13 | 978-94-024-2158-3 / 9789402421583 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich