A Practical Guide to Quantum Machine Learning and Quantum Optimization (eBook)
680 Seiten
Packt Publishing (Verlag)
978-1-80461-830-1 (ISBN)
Work with fully explained algorithms and ready-to-use examples that can be run on quantum simulators and actual quantum computers with this comprehensive guide
Key Features
- Get a solid grasp of the principles behind quantum algorithms and optimization with minimal mathematical prerequisites
- Learn the process of implementing the algorithms on simulators and actual quantum computers</li><li>Solve real-world problems using practical examples of methods
Book Description
This book provides deep coverage of modern quantum algorithms that can be used to solve real-world problems. You’ll be introduced to quantum computing using a hands-on approach with minimal prerequisites.
You’ll discover many algorithms, tools, and methods to model optimization problems with the QUBO and Ising formalisms, and you will find out how to solve optimization problems with quantum annealing, QAOA, Grover Adaptive Search (GAS), and VQE. This book also shows you how to train quantum machine learning models, such as quantum support vector machines, quantum neural networks, and quantum generative adversarial networks. The book takes a straightforward path to help you learn about quantum algorithms, illustrating them with code that’s ready to be run on quantum simulators and actual quantum computers. You’ll also learn how to utilize programming frameworks such as IBM’s Qiskit, Xanadu’s PennyLane, and D-Wave’s Leap.
Through reading this book, you will not only build a solid foundation of the fundamentals of quantum computing, but you will also become familiar with a wide variety of modern quantum algorithms. Moreover, this book will give you the programming skills that will enable you to start applying quantum methods to solve practical problems right away.
What you will learn:
- Review the basics of quantum computing
- Gain a solid understanding of modern quantum algorithms
- Understand how to formulate optimization problems with QUBO
- Solve optimization problems with quantum annealing, QAOA, GAS, and VQE
- Find out how to create quantum machine learning models
- Explore how quantum support vector machines and quantum neural networks work using Qiskit and PennyLane
- Discover how to implement hybrid architectures using Qiskit and PennyLane and its PyTorch interface
Who this book is for:
This book is for professionals from a wide variety of backgrounds, including computer scientists and programmers, engineers, physicists, chemists, and mathematicians. Basic knowledge of linear algebra and some programming skills (for instance, in Python) are assumed, although all mathematical prerequisites will be covered in the appendices.
Key FeaturesGet a solid grasp of the principles behind quantum algorithms and optimization with minimal mathematical prerequisitesLearn the process of implementing the algorithms on simulators and actual quantum computersSolve real-world problems using practical examples of methodsBook DescriptionThis book provides deep coverage of modern quantum algorithms that can be used to solve real-world problems. You'll be introduced to quantum computing using a hands-on approach with minimal prerequisites. You'll discover many algorithms, tools, and methods to model optimization problems with the QUBO and Ising formalisms, and you will find out how to solve optimization problems with quantum annealing, QAOA, Grover Adaptive Search (GAS), and VQE. This book also shows you how to train quantum machine learning models, such as quantum support vector machines, quantum neural networks, and quantum generative adversarial networks. The book takes a straightforward path to help you learn about quantum algorithms, illustrating them with code that's ready to be run on quantum simulators and actual quantum computers. You'll also learn how to utilize programming frameworks such as IBM's Qiskit, Xanadu's PennyLane, and D-Wave's Leap. Through reading this book, you will not only build a solid foundation of the fundamentals of quantum computing, but you will also become familiar with a wide variety of modern quantum algorithms. Moreover, this book will give you the programming skills that will enable you to start applying quantum methods to solve practical problems right away.What you will learnReview the basics of quantum computingGain a solid understanding of modern quantum algorithmsUnderstand how to formulate optimization problems with QUBOSolve optimization problems with quantum annealing, QAOA, GAS, and VQEFind out how to create quantum machine learning modelsExplore how quantum support vector machines and quantum neural networks work using Qiskit and PennyLaneDiscover how to implement hybrid architectures using Qiskit and PennyLane and its PyTorch interfaceWho this book is forThis book is for professionals from a wide variety of backgrounds, including computer scientists and programmers, engineers, physicists, chemists, and mathematicians. Basic knowledge of linear algebra and some programming skills (for instance, in Python) are assumed, although all mathematical prerequisites will be covered in the appendices.]]>
Erscheint lt. Verlag | 31.3.2023 |
---|---|
Vorwort | Alberto Di Meglio |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
ISBN-10 | 1-80461-830-6 / 1804618306 |
ISBN-13 | 978-1-80461-830-1 / 9781804618301 |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich