Orthogonal Functions -

Orthogonal Functions

Moment Theory and Continued Fractions

William Jones, A. Sri Ranga (Herausgeber)

Buch | Softcover
438 Seiten
1998
Crc Press Inc (Verlag)
978-0-8247-0207-6 (ISBN)
218,20 inkl. MwSt
"Oulines an array of recent work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. Describes links between continued fractions. Pade approximation, special functions, and Gaussian quadrature."

WILLIAM B. JONES is Professor Emeritus of Mathematics at the University of Colo­rado. He is the author or coauthor of more than 190 research papers, abstracts, and invited lectures. Dr. Jones is a member of the American Mathematical Society, the Mathematical Association of America, the Society for Industrial and Applied Mathematics, and the American Association of University Professors. He received the B.A. degree (1953) from Jacksonville State University, Alabama, and the M.A. (1955) and Ph.D. (1963) degrees from Vanderbilt University, Nashville, Tennessee. A. SRI RANGA is Professor of Numerical Analysis in the Departamento de Ciencias de Computa

Chebyshev-Laurent polynomials and weighted approximation; natural solutions of indeterminate strong Stieltjes moment problems derived from PC-fractions; a class of indeterminate strong Stieltjes moment problems with discrete distributions; symmetric orthogonal L-polynomials in the complex plane; continued fractions and orthogonal rational functions; interpolation of Nevanlinna functions by rationals with poles on the real line; symmetric orthogonal Laurent polynomials; interpolating Laurent polynomials; computation of the gamma and Binet functions by Stieltjes continued fractions; formulas for the moments of some strong moment distributions; orthogonal Laurent polynomials of Jacobi, Hermite and Laguerre types; regular strong Hamburger moment problems; asymptotic behaviour of the continued fraction coefficients of a class of Stieltjes transforms, including the Binet function; uniformity and speed of convergence of complex continued fractions K(an/1); separation theorem of Chebyshev-Markov-Stieltjes type for Laurent polynomials orthogonal on (0, alpha); orthogonal polynomials associated with a non-diagonal Sobolev inner product with polynomial coefficients; remarks on canonical solutions of strong moment problems; Sobolev orthogonality and properties of the generalized Laguerre polynomials; a combination of two methods in frequency analysis -the R(N)-process; zeros of Szego polynomials used in frequency analysis; some probabilistic remarks on the boundary version of Worpitzky's theorem.

Erscheint lt. Verlag 24.7.1998
Reihe/Serie Lecture Notes in Pure and Applied Mathematics
Verlagsort Bosa Roca
Sprache englisch
Maße 178 x 254 mm
Gewicht 771 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 0-8247-0207-7 / 0824702077
ISBN-13 978-0-8247-0207-6 / 9780824702076
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95