Latent Factor Analysis for High-dimensional and Sparse Matrices - Ye Yuan, Xin Luo

Latent Factor Analysis for High-dimensional and Sparse Matrices (eBook)

A particle swarm optimization-based approach

, (Autoren)

eBook Download: PDF
2022 | 1st ed. 2022
VIII, 92 Seiten
Springer Nature Singapore (Verlag)
978-981-19-6703-0 (ISBN)
Systemvoraussetzungen
48,14 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.

This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications.

The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.



Dr. Ye Yuan is an Associate Professor at the College of Computer and Information Science, Southwest University. His main research fields are data mining and machine learning. He has published over 24 SCI/EI papers, including for top journals and conferences like IEEE T. KDE, CYB, WWW and ECAI. He has applied for 11 and holds 5 national invention patents and won First Prize in the Wu Wenjun AI Science and Technology Progress Award and First Prize in the Chongqing Science and Technology Progress Award.

Dr. Xin Luo is a Professor at the College of Computer and Information Science, Southwest University. His current research interests include machine intelligence, big data, and cloud computing. He has published over 200 papers (including over 87 IEEE TRANSACTIONS papers and 17 highly cited papers in ESI) in the above areas. He holds 35 national invention patents. He was part of the Pioneer Hundred Talents Program of the Chinese Academy of Sciences in 2016, the Advanced Support of the Pioneer Hundred Talents Program of Chinese Academy of Sciences in 2018, and the National High-Level Talents Special Support Program in 2020. He won First Prize in the Chongqing Natural Science Award (2019), First Prize in the Wu Wenjun AI Science and Technology Progress Award (2018) and First Prize in the Chongqing Science and Technology Progress Award (2018). He serves as an Associate Editor for the IEEE/CAA Journal of Automatica Sinica, and for IEEE Transactions on Neural Networks and Learning Systems. He received the Outstanding Associate Editor Award from the IEEE/CAA Journal of Automatica Sinica in 2020.


Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications.The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
Erscheint lt. Verlag 15.11.2022
Reihe/Serie SpringerBriefs in Computer Science
SpringerBriefs in Computer Science
Zusatzinfo VIII, 92 p. 1 illus.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Schlagworte High-dimensional and Sparse • Hyper-parameter-free • Latent factor analysis • Particle swarm optimization • Recommended system
ISBN-10 981-19-6703-2 / 9811967032
ISBN-13 978-981-19-6703-0 / 9789811967030
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99