Machine Learning Algorithm for Fatigue Fields in Additive Manufacturing

Buch | Softcover
XXXVIII, 255 Seiten
2023 | 1st ed. 2022
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-40236-5 (ISBN)

Lese- und Medienproben

Machine Learning Algorithm for Fatigue Fields in Additive Manufacturing - Mustafa Mamduh Mustafa Awd
96,29 inkl. MwSt

Fatigue failure of structures used in transportation, industry, medical equipment, and electronic components needs to build a link between cutting-edge experimental characterization and probabilistically grounded numerical and artificially intelligent tools. The physics involved in this process chain is computationally prohibitive to comprehend using traditional computation methods. Using machine learning and Bayesian statistics, a defect-correlated estimate of fatigue strength was developed. Fatigue, which is a random variable, is studied in a Bayesian-based machine learning algorithm. The stress-life model was used based on the compatibility condition of life and load distributions. The defect-correlated assessment of fatigue strength was established using the proposed machine learning and Bayesian statistics algorithms. It enabled the mapping of structural and process-induced fatigue characteristics into a geometry-independent load density chart across a wide range of fatigue regimes.

lt;p>Mustafa Mamduh Mustafa Awd heads the Workgroup Modeling and Simulation at the Chair of Materials Test Engineering (WPT). He deals with the problem of multiscale numerical analysis of the effect of microstructural heterogeneities on fatigue strength by adapting quantum mechanical methods and data-driven algorithms alongside numerical optimization. The developed general-purpose models help increase the structural stability and production efficiency of modern manufacturing processes.

Introduction and objectives.- Background on process-property relationship.- Training and testing data.- Estimation of lifetime trends based on FEM.- Bayesian inferences of fatigue-related influences.- Summary and outlook.- References.

Erscheinungsdatum
Reihe/Serie Werkstofftechnische Berichte │ Reports of Materials Science and Engineering
Zusatzinfo XXXVIII, 255 p. 143 illus.
Verlagsort Wiesbaden
Sprache englisch
Maße 148 x 210 mm
Gewicht 362 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Additive Manufacturing • Bayesian Statistics • fatigue strength • fracture mechanics • machine learning • Numerical modelling
ISBN-10 3-658-40236-9 / 3658402369
ISBN-13 978-3-658-40236-5 / 9783658402365
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00