Optimization in Banach Spaces (eBook)

eBook Download: PDF
2022 | 1st ed. 2022
VIII, 126 Seiten
Springer International Publishing (Verlag)
978-3-031-12644-4 (ISBN)

Lese- und Medienproben

Optimization in Banach Spaces - Alexander J. Zaslavski
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The book is devoted to the study of constrained minimization  problems on closed and convex sets in Banach spaces with a Frechet differentiable objective function. Such  problems are well studied in a  finite-dimensional space and in an infinite-dimensional Hilbert space. When the space is Hilbert there are many algorithms for solving optimization problems including the gradient projection algorithm which  is one of the most important tools in the optimization theory, nonlinear analysis and their applications. An optimization problem is described by an  objective function  and a set of feasible points. For the gradient projection algorithm each iteration consists of two steps. The first step is a calculation of a gradient of the objective function while in the second one  we calculate a projection on the feasible  set. In each of these two steps there is a computational error. In our recent research we show that the gradient projection algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. It should be mentioned that  the properties of a Hilbert space play an important role. When we consider an optimization problem in a general Banach space the situation becomes more difficult and less understood. On the other hand such problems arise in the approximation theory. The book is of interest for mathematicians working in  optimization. It also can be useful in preparation courses for graduate students.  The main feature of the book which appeals specifically to this audience is the study of algorithms for convex and nonconvex minimization problems in a general Banach space. The book is of interest for experts in applications of optimization to the approximation theory.

In this book the goal is to obtain a good approximate solution of the constrained optimization problem in a general Banach space under  the presence of computational errors.  It is shown that the algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. The book consists of four chapters. In the first we discuss several algorithms which are studied in the book and  prove a convergence result for an unconstrained problem which is a prototype of our results for the constrained problem. In Chapter 2 we analyze convex optimization problems. Nonconvex optimization problems  are studied in Chapter 3. In Chapter 4 we study  continuous   algorithms for minimization problems under the presence of computational errors. The algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. The book consists of four chapters. In the first we discuss several algorithms which are studied in the book and  prove a convergence result for an unconstrained problem which is a prototype of our results for the constrained problem. In Chapter 2 we analyze convex optimization problems. Nonconvex optimization problems  are studied in Chapter 3. In Chapter 4 we study  continuous   algorithms for minimization problems under the presence of computational errors.





?Alexander J. Zaslavski is professor in the Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel. He has authored numerous books with Springer, the most recent of which include Turnpike Phenomenon and Symmetric Optimization  Problems (978-3-030-96972-1), Turnpike Theory for the Robinson-Solow-Srinivasan Model (978-3-030-60306-9),  The Projected Subgradient Algorithm in Convex Optimization (978-3-030-60299-4),  Convex Optimization with Computational Errors (978-3-030-37821-9), Turnpike Conditions in Infinite Dimensional Optimal Control (978-3-030-20177-7), Optimization on Solution Sets of Common Fixed Point Problems  (978-3-030-78848-3).
Erscheint lt. Verlag 29.9.2022
Reihe/Serie SpringerBriefs in Optimization
SpringerBriefs in Optimization
Zusatzinfo VIII, 126 p.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Approximation Theory • Banach space • constrained minimization problem • Constrained Optimization Problem • hilbert space • Nonconvex Optimization
ISBN-10 3-031-12644-0 / 3031126440
ISBN-13 978-3-031-12644-4 / 9783031126444
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99
Grundlagen - Methoden - Anwendungen

von André Krischke; Helge Röpcke

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99