Locating Eigenvalues in Graphs (eBook)

Algorithms and Applications
eBook Download: PDF
2022 | 1st ed. 2022
XII, 136 Seiten
Springer International Publishing (Verlag)
978-3-031-11698-8 (ISBN)

Lese- und Medienproben

Locating Eigenvalues in Graphs - Carlos Hoppen, David P. Jacobs, Vilmar Trevisan
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book focuses on linear time eigenvalue location algorithms for graphs. This subject relates to spectral graph theory, a field that combines tools and concepts of linear algebra and combinatorics, with applications ranging from image processing and data analysis to molecular descriptors and random walks. It has attracted a lot of attention and has since emerged as an area on its own.

Studies in spectral graph theory seek to determine properties of a graph through matrices associated with it. It turns out that eigenvalues and eigenvectors have surprisingly many connections with the structure of a graph. This book approaches this subject under the perspective of eigenvalue location algorithms. These are algorithms that, given a symmetric graph matrix M and a real interval I, return the number of eigenvalues of M that lie in I. Since the algorithms described here are typically very fast, they allow one to quickly approximate the value of any eigenvalue, which is a basic step in most applications of spectral graph theory. Moreover, these algorithms are convenient theoretical tools for proving bounds on eigenvalues and their multiplicities, which was quite useful to solve longstanding open problems in the area. This book brings these algorithms together, revealing how similar they are in spirit, and presents some of their main applications.

This work can be of special interest to graduate students and researchers in spectral graph theory, and to any mathematician who wishes to know more about eigenvalues associated with graphs. It can also serve as a compact textbook for short courses on the topic.



Carlos Hoppen holds a PhD in Combinatorics and Optimization from the University of Waterloo, Canada. He is an Associate Professor of Mathematics at the Federal University of Rio Grande do Sul (UFRGS), Brazil. His research focuses on probabilistic and extremal combinatorics, and spectral graph theory.

David P. Jacobs is a Professor Emeritus of Computer Science at Clemson University, USA. He has done research in various areas including graph algorithms and spectral graph theory. In 2006, he visited UFRGS as a Fulbright Scholar.

Vilmar Trevisan is a Professor of Mathematics at UFRGS. He earned a PhD in Mathematics at Kent State University, USA. His research focuses on combinatorics and spectral graph theory. He is currently a Visiting Professor at the Università degli Studi di Napoli, Italy.

Erscheint lt. Verlag 21.9.2022
Reihe/Serie SpringerBriefs in Mathematics
SpringerBriefs in Mathematics
Zusatzinfo XII, 136 p. 37 illus., 25 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Mathematik
Schlagworte Adjacency Matrix • eigenvalue • Graph • Graph Algorithms • Laplacian matrix • linear-time algorithm • Spectral Graph theory • spectrum • Tree
ISBN-10 3-031-11698-4 / 3031116984
ISBN-13 978-3-031-11698-8 / 9783031116988
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Johannes Ernesti; Peter Kaiser

eBook Download (2023)
Rheinwerk Computing (Verlag)
35,92
Deterministische und randomisierte Algorithmen

von Volker Turau; Christoph Weyer

eBook Download (2024)
De Gruyter (Verlag)
64,95
Das Handbuch für Webentwickler

von Philip Ackermann

eBook Download (2023)
Rheinwerk Computing (Verlag)
39,92