Lattice Rules (eBook)

Numerical Integration, Approximation, and Discrepancy
eBook Download: PDF
2022 | 1st ed. 2022
XVI, 580 Seiten
Springer International Publishing (Verlag)
978-3-031-09951-9 (ISBN)

Lese- und Medienproben

Lattice Rules - Josef Dick, Peter Kritzer, Friedrich Pillichshammer
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Lattice rules are a powerful and popular form of quasi-Monte Carlo rules based on multidimensional integration lattices. This book provides a comprehensive treatment of the subject with detailed explanations of the basic concepts and the current methods used in research. This comprises, for example, error analysis in reproducing kernel Hilbert spaces, fast component-by-component constructions, the curse of dimensionality and tractability, weighted integration and approximation problems, and applications of lattice rules.



Josef Dick is a Professor in the School of Mathematics and Statistics at the University of New South Wales in Sydney, Australia. His research focuses on computational mathematics and its applications, in particular, quasi-Monte Carlo methods for integration and approximation, and its applications to Uncertainty Quantification. He works in the area of computational mathematics, in particular quasi-Monte Carlo methods and Uncertainty Quantification. He has been awarded several prices, including the Heyde Medal of the Australian Academy of Science and the Medal of the Australian Mathematical Society. He is a member of the steering committee of the conference series on Monte Carlo and quasi-Monte Carlo methods (MCQMC), a senior Editor of the Journal of Complexity, and an Editor of the Journal of Approximation Theory.

Peter Kritzer is a Senior Scientist at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) of the Austrian Academy of Sciences in Linz, Austria, where he leads a work group doing research on quasi-Monte Carlo methods, multivariate algorithms, and Information-Based Complexity. Peter Kritzer's research focuses on mostly theoretical aspects of high-dimensional numerical integration, function approximation, and Information-Based Complexity. He has worked at Austrian and Australian universities and research institutions and has been awarded several prizes, such as the Information-Based Complexity Young Researcher Award, the Prize for Achievements in Information-Based Complexity, and the Christian Doppler Award. Apart from his research work at the Austrian Academy of Sciences, he teaches at Johannes Kepler University Linz and serves as an editorial board member of the Journal of Complexity.

Friedrich Pillichshammer is an Associate Professor in the Institute for Financial Mathematics and Applied Number Theory at the Johannes Kepler University Linz, Austria. He is an author with Josef Dick of the book 'Digital Nets and Sequences - Discrepancy Theory and Quasi-Monte Carlo Methods' and with Gunther Leobacher of the book 'Introduction to Quasi-Monte Carlo Integration and Applications'. Friedrich Pillichshammer's work is devoted to the theory and foundations of quasi-Monte Carlo methods. This comprises his research work but also teaching experience. For his work he received several honors. Examples are the Information-Based-Complexity award, a best paper award from the Journal of Complexity and awards from the Austrian Mathematical Society and from the Austrian Academy of Sciences. He is member of scientific committees and editorial boards like the steering committee of the MCQMC conference series, the editorial board of the Journal of Complexity and Managing Editor of the journal Uniform Distribution theory.


Erscheint lt. Verlag 23.7.2022
Reihe/Serie Springer Series in Computational Mathematics
Springer Series in Computational Mathematics
Zusatzinfo XVI, 580 p. 32 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte discrepancy • Function approximation • information-based complexity • lattice rules • Numerical Integration • quasi Monte Carlo methods • Tractability • worst-case error
ISBN-10 3-031-09951-6 / 3031099516
ISBN-13 978-3-031-09951-9 / 9783031099519
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48