IoT and WSN based Smart Cities: A Machine Learning Perspective (eBook)

eBook Download: PDF
2022 | 1st ed. 2022
X, 284 Seiten
Springer International Publishing (Verlag)
978-3-030-84182-9 (ISBN)

Lese- und Medienproben

IoT and WSN based Smart Cities: A Machine Learning Perspective -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides an investigative approach to how machine learning is helping to maintain and secure smart cities, including principal uses such as smart monitoring, privacy, reliability, and public protection. The authors cover important areas and issues around implementation roadblocks, ideas, and opportunities in smart city development. The authors also include new algorithms, architectures and platforms that can accelerate the growth of smart city concepts and applications. Moreover, this book provides details on specific applications and case studies related to smart city infrastructures, big data management, and prediction techniques using machine learning.

Dr. Shalli Rani is Associate Professor in CSE with Chitkara University (Rajpura (Punjab)), India. She has 15+ years teaching experience. She received MCA degree from Maharishi Dyanand University, Rohtak in 2004 and the M.Tech. degree in Computer Science from Janardan Rai  Nagar Vidyapeeth University, Udaipur  in 2007 and Ph.D. degree in Computer Applications from Punjab Technical University, Jalandhar in 2017. Her main area of interest and research are Wireless Sensor Networks, Underwater Sensor networks and Internet of Things. She has published/accepted/presented more than 35+ papers in international journals /conferences (SCI+Scopus) and two books with Springer.  She is serving as the associate editor of IEEE Future Directions Letters.  She has worked on Big Data, Underwater Acoustic Sensors and IoT to show the importance of WSN in IoT applications. She received a young scientist award in Feb. 2014 from Punjab Science Congress, in the same field. 

Dr. Vyasa Sai is a Senior Hardware Engineer in the Visual and Machine Learning IP Group @ Intel Corporation, Folsom, CA, USA. He received his PhD from the Department of Electrical and Computer Engineering (ECE) at the University of Pittsburgh, Pittsburgh, PA, USA in 2013. He also has a Master of Science degree in ECE and a Bachelor of technology degree in ECE from USA and India respectively. Dr. Sai is a published author with numerous refereed international publications in the field of electronics and communication engineering that includes IoT, WSN, RFID, Low Power Electronics, Security, among others. Dr. Sai is also a published inventor who holds several US patents along with technical leadership roles on editorial boards, advisory board, technical committees at IEEE, Elsevier, among others. He is also an invited reviewer for many international journals and conferences. Dr. Sai's research contributions and accomplishments have won him many international honors that include 2018 Williams award, 2019 outstanding scientist award, 2020 Sheth International Achievement award, among others.

Dr. R. Maheswar has completed his B.E (ECE) from Madras University in the year 1999, M.E (Applied Electronics) from Bharathiyar University in the year 2002 and Ph.D in the field of Wireless Sensor Network from Anna University in the year 2012. He has about 20 years of teaching experience at various levels and presently working as Professor in the Department of ECE, KPR Institute of Engineering and Technology, Coimbatore. He has published around 70 papers at International Journals and International Conferences and published 4 patents. His research interest includes Wireless Sensor Network, IoT, Queueing theory and Performance Evaluation. He has served as guest editor for Wireless Networks Journal, Springer and serving as editorial review board member for peer reviewed journals, and also edited 4 books supported by EAI/Springer Innovations in Communications and Computing book series. He is presently an associate editor in Wireless Networks Journal, Springer and Alexandria Engineering Journal, Elsevier.

Erscheint lt. Verlag 30.5.2022
Reihe/Serie EAI/Springer Innovations in Communication and Computing
EAI/Springer Innovations in Communication and Computing
Zusatzinfo X, 284 p. 130 illus., 104 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Technik Elektrotechnik / Energietechnik
Schlagworte internet of things • machine learning • smart cities • Smart City Applications • wireless sensor networks
ISBN-10 3-030-84182-0 / 3030841820
ISBN-13 978-3-030-84182-9 / 9783030841829
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Martin Linten; Axel Schemberg; Kai Surendorf

eBook Download (2023)
Rheinwerk Computing (Verlag)
20,93
das Praxisbuch für Administratoren und DevOps-Teams

von Michael Kofler

eBook Download (2023)
Rheinwerk Computing (Verlag)
27,93