Deep Learning for Computational Problems in Hardware Security - Pranesh Santikellur, Rajat Subhra Chakraborty

Deep Learning for Computational Problems in Hardware Security

Modeling Attacks on Strong Physically Unclonable Function Circuits
Buch | Hardcover
84 Seiten
2022 | 1st ed. 2023
Springer Verlag, Singapore
978-981-19-4016-3 (ISBN)
106,99 inkl. MwSt
The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.

Pranesh Santikellur is a Ph.D. student and a Senior Research Fellow in the Department of Computer Science and Engineering at the Indian Institute of Technology, Kharagpur. He received his B.E. degree in Electronics & Communication Engineering from Visvesvaraya Technological University, Belgaum, India, in 2010. He has a total of 6 years of industry experience at Horner Engineering India Pvt. Ltd. and Processor Systems. His primary research interest lies in hardware security, deep learning, and programmable logic controller security. He is an IEEE student member. Rajat Subhra Chakraborty is an Associate Professor in the Department of Computer Science & Engineering of the Indian Institute of Technology, Kharagpur, India. He has professional experience working in National Semiconductor and Advanced Micro Devices (AMD). His research interest lies in the areas of hardware security, VLSI design, digital watermarking, and digital image forensics, in which he has published 4 books and over 100 papers in international journals and conferences of repute. He holds 2 granted U.S. patents. His publications have received over 3600 citations to date. Dr. Chakraborty has a Ph.D. in Computer Engineering from Case Western Reserve University, USA, and is a senior member of IEEE and ACM.

Chapter 1: Introduction.- Chapter 2: Fundamental Concepts of Machine Learning.- Chapter 3: Supervised Machine Learning Algorithms for PUF Modeling Attacks.- Chapter 4: Deep Learning based PUF Modeling Attacks.- Chapter 5: Tensor Regression based PUF Modeling Attack.- Chapter 6: Binarized Neural Network based PUF Modeling.- Chapter 7: Conclusions and Future Work. 

Erscheinungsdatum
Reihe/Serie Studies in Computational Intelligence ; 1052
Zusatzinfo 18 Illustrations, color; 13 Illustrations, black and white; XIII, 84 p. 31 illus., 18 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Technik Elektrotechnik / Energietechnik
ISBN-10 981-19-4016-9 / 9811940169
ISBN-13 978-981-19-4016-3 / 9789811940163
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00