Contributions to Current Challenges in Mathematical Fluid Mechanics -

Contributions to Current Challenges in Mathematical Fluid Mechanics

Buch | Hardcover
VIII, 152 Seiten
2004 | 2004
Springer Basel (Verlag)
978-3-7643-7104-3 (ISBN)
53,49 inkl. MwSt
This volume consists of five research articles, each dedicated to a significant topic in the mathematical theory of the Navier-Stokes equations, for compressible and incompressible fluids, and to related questions. All results given here are new and represent a noticeable contribution to the subject. One of the most famous predictions of the Kolmogorov theory of turbulence is the so-called Kolmogorov-obukhov five-thirds law. As is known, this law is heuristic and, to date, there is no rigorous justification. The article of A. Biryuk deals with the Cauchy problem for a multi-dimensional Burgers equation with periodic boundary conditions. Estimates in suitable norms for the corresponding solutions are derived for "large" Reynolds numbers, and their relation with the Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for the Navier-Stokes equation. In the late sixties J. L. Lions introduced a "perturbation" of the Navier Stokes equations in which he added in the linear momentum equation the hyper dissipative term (-Ll),Bu, f3 ~ 5/4, where Ll is the Laplace operator. This term is referred to as an "artificial" viscosity. Even though it is not physically moti vated, artificial viscosity has proved a useful device in numerical simulations of the Navier-Stokes equations at high Reynolds numbers. The paper of of D. Chae and J. Lee investigates the global well-posedness of a modification of the Navier Stokes equation similar to that introduced by Lions, but where now the original dissipative term -Llu is replaced by (-Ll)O:u, 0 S Ct 5/4.

On Multidimensional Burgers Type Equations with Small Viscosity.- 1. Introduction.- 2. Upper estimates.- 3. Lower estimates.- 4. Fourier coefficients.- 5. Low bounds for spatial derivatives of solutions of the Navier Stokes system.- References.- On the Global Well-posedness and Stability of the Navier Stokes and the Related Equations.- 1. Introduction.- 2. Littlewood Paley decomposition.- 3. Proof of Theorems.- References.- The Commutation Error of the Space Averaged Navier Stokes Equations on a Bounded Domain.- 1. Introduction.- 2. The space averaged Navier-Stokes equations in a bounded domain.- 3. The Gaussian filter.- 4. Error estimates in the (Lp(?d))d norm of the commutation error term.- 5. Error estimates in the (H-1(?))d norm of the commutation error term.- 6. Error estimates for a weak form of the commutation error term.- 7. The boundedness of the kinetic energy for ñ in some LES models.- References.- The Nonstationary Stokes and Navier Stokes Flows Through an Aperture.- 1. Introduction.- 2. Results.- 3. The Stokes resolvent for the half space.- 4. The Stokes resolvent.- 5. L4-Lr estimates of the Stokes semigroup.- 6. The Navier Stokes flow.- References.- Asymptotic Behavior at Infinity of Exterior Three-dimensional Steady Compressible Flow.- 1. Introduction.- 2. Function spaces and auxiliary results.- 3. Stokes and modified Stokes problems in weighted spaces.- 4. Transport equation and Poisson-type equation.- 5. Linearized problem.- 6. Nonlinear problem.- References.

Erscheint lt. Verlag 23.7.2004
Reihe/Serie Advances in Mathematical Fluid Mechanics
Zusatzinfo VIII, 152 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 435 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie Mechanik
Schlagworte fluid mechanics • Kompressible Flüssigkeiten • Navier-Stokes Equation • Partial differential equations • Strömungslehre/-mechanik • Strömungslehre/Strömungsmechanik • Strömungsmechanik • Turbulenz
ISBN-10 3-7643-7104-8 / 3764371048
ISBN-13 978-3-7643-7104-3 / 9783764371043
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99