Graphs and Discrete Dirichlet Spaces (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
XV, 668 Seiten
Springer International Publishing (Verlag)
978-3-030-81459-5 (ISBN)

Lese- und Medienproben

Graphs and Discrete Dirichlet Spaces - Matthias Keller, Daniel Lenz, Radosław K. Wojciechowski
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach.

The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case.

Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level.



Matthias Keller studied in Chemnitz and obtained his PhD in Jena. He held positions in Princeton, Jerusalem and Haifa before becoming a professor at the University of Potsdam.

Daniel Lenz obtained his PhD in Frankfurt am Main. After prolonged stays in Jerusalem, Chemnitz and Houston, he is now a professor at the Friedrich Schiller University in Jena.

Radoslaw Wojciechowski got his PhD at the Graduate Center of the City University of New York following his undergraduate studies at Indiana University Bloomington. After a postdoc period in Lisbon he is now a professor at York College and the Graduate Center in New York City.

Erscheint lt. Verlag 22.10.2021
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Grundlehren der mathematischen Wissenschaften
Zusatzinfo XV, 668 p. 4 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Schlagworte Dirichlet form • Graph Laplacian • Heat equation on graphs • intrinsic metrics • markov semigroups • Schrödinger Operators • Spectral Graph theory • Stochastic Completeness
ISBN-10 3-030-81459-9 / 3030814599
ISBN-13 978-3-030-81459-5 / 9783030814595
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich