Geometric Approximation Theory
Springer International Publishing (Verlag)
978-3-030-90950-5 (ISBN)
Main notation, definitions, auxillary results, and examples.- Chebyshev alternation theorem, Haar and Mairhuber's theorems.- Best approximation in Euclidean spaces.- Existence and compactness.- Characterization of best approximation.- Convexity of Chebyshev sets and sums.- Connectedness and stability.- Existence of Chebyshev subspaces.- Efimov-Stechkin spaces. Uniform convexity and uniform smoothness. Uniqueness and strong uniqueness of best approximation in uniformly convex spaces.- Solarity of Chebyshev sets.- Rational approximation.- Haar cones and varisolvencity.- Approximation of vector-valued functions.- The Jung constant.- Chebyshev centre of a set.- Width. Approximation by a family of sets.- Approximative properties of arbitrary sets.- Chebyshev systems of functions in the spaces C, Cn, and Lp.- Radon, Helly, and Carathéodory theorems. Decomposition theorem.- Some open problems.- Index.
Erscheinungsdatum | 31.03.2022 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics |
Zusatzinfo | XXI, 508 p. 21 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 955 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | best approximation • Chebyshev center • Chebyshev set • Chebyshev subspace • Jung constant • Metric projection • nearest point • Sun • width |
ISBN-10 | 3-030-90950-6 / 3030909506 |
ISBN-13 | 978-3-030-90950-5 / 9783030909505 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich