Modern Nonconvex Nondifferentiable Optimization - Ying Cui, Jong-Shi Pang

Modern Nonconvex Nondifferentiable Optimization

, (Autoren)

Buch | Hardcover
774 Seiten
2022
Society for Industrial & Applied Mathematics,U.S. (Verlag)
978-1-61197-673-1 (ISBN)
147,15 inkl. MwSt
Starting with the fundamentals of classical smooth optimization and building on established convex programming techniques, this research monograph presents a foundation and methodology for modern nonconvex nondifferentiable optimization. It provides readers with theory, methods, and applications of nonconvex and nondifferentiable optimization in statistical estimation, operations research, machine learning, and decision making.

A comprehensive and rigorous treatment of this emergent mathematical topic is urgently needed in today's complex world of big data and machine learning. This book takes a thorough approach to the subject and includes examples and exercises to enrich the main themes, making it suitable for classroom instruction.

Modern Nonconvex Nondifferentiable Optimization is intended for applied and computational mathematicians, optimizers, operations researchers, statisticians, computer scientists, engineers, economists, and machine learners. It could be used in advanced courses on optimization/operations research and nonconvex and nonsmooth optimization.
Erscheinungsdatum
Reihe/Serie MOS-SIAM Series on Optimization
Verlagsort New York
Sprache englisch
Gewicht 1752 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 1-61197-673-1 / 1611976731
ISBN-13 978-1-61197-673-1 / 9781611976731
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36