Quantile Regression (eBook)

Applications on Experimental and Cross Section Data using EViews
eBook Download: PDF
2021 | 1. Auflage
496 Seiten
John Wiley & Sons (Verlag)
978-1-119-71516-0 (ISBN)

Lese- und Medienproben

Quantile Regression
Systemvoraussetzungen
102,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
QUANTILE REGRESSION

A thorough presentation of Quantile Regression designed to help readers obtain richer information from data analyses

The conditional least-square or mean-regression (MR) analysis is the quantitative research method used to model and analyze the relationships between a dependent variable and one or more independent variables, where each equation estimation of a regression can give only a single regression function or fitted values variable. As an advanced mean regression analysis, each estimation equation of the mean-regression can be used directly to estimate the conditional quantile regression (QR), which can quickly present the statistical results of a set nine QR(tau)s for tau(tau)s from 0.1 up to 0.9 to predict detail distribution of the response or criterion variable. QR is an important analytical tool in many disciplines such as statistics, econometrics, ecology, healthcare, and engineering.

Quantile Regression: Applications on Experimental and Cross Section Data Using EViews provides examples of statistical results of various QR analyses based on experimental and cross section data of a variety of regression models. The author covers the applications of one-way, two-way, and n-way ANOVA quantile regressions, QRs with multi numerical predictors, heterogeneous QRs, and latent variables QRs, amongst others. Throughout the text, readers learn how to develop the best possible quantile regressions and how to conduct more advanced analysis using methods such as the quantile process, the Wald test, the redundant variables test, residual analysis, the stability test, and the omitted variables test. This rigorous volume:
* Describes how QR can provide a more detailed picture of the relationships between independent variables and the quantiles of the criterion variable, by using the least-square regression
* Presents the applications of the test for any quantile of any numerical response or -criterion variable
* Explores relationship of QR with heterogeneity: how an independent variable affects a dependent variable
* Offers expert guidance on forecasting and how to draw the best conclusions from the results obtained
* Provides a step-by-step estimation method and guide to enable readers to conduct QR analysis using their own data sets
* Includes a detailed comparison of conditional QR and conditional mean regression

Quantile Regression: Applications on Experimental and Cross Section Data Using EViews is a highly useful resource for students and lecturers in statistics, data analysis, econometrics, engineering, ecology, and healthcare, particularly those specializing in regression and quantitative data analysis.

I Gusti Ngurah Agung, PhD, The Ary Suta Center, Jakarta, Indonesia. Professor Agung taught at the State University of Makassar from 1960-1987, and at the University of Indonesia from 1987-2018. His research has focused on finding expected or unpredictable statistical results based on various models of time series, cross-section, experimental data, and panel data models. In addition, he is also interested in cross-section data over times and a special or uncommon panel data in indexes.

Ch. 1: Test for Equality of Medians by Series/Group OF Variables

Ch. 2: One and Two-Way ANOVA Quantile Regressions

Ch. 3: N-Way ANOVA Quantile Regressions

Ch. 4: Quantile Regressions Based On (Xi,Yi)

Ch. 5: Quantile Regressions with Two Numerical Predictors

Ch. 6: Quantile Regressions with Multi Numerical Predictors

Ch. 7: Quantile Regressions with the Ranks of Numerical Predictors

Ch. 8: Heterogeneous Quantile Regressions based on Experimental Data

Ch. 9: Quantile Regressions Based On CPS88.wf1

Ch.10 : QUANTILE REGRESSIONS OF A LATENT VARIABLE

Appendix A

Appendix B

Appendix C

Bibliography

Erscheint lt. Verlag 18.6.2021
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Data Analysis • Datenanalyse • Econometrics • Economics • Ökonometrie • Regression Analysis • Regressionsanalyse • Statistics • Statistik • Volkswirtschaftslehre
ISBN-10 1-119-71516-4 / 1119715164
ISBN-13 978-1-119-71516-0 / 9781119715160
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 16,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
24,99