Data Driven Approaches for Healthcare
Machine learning for Identifying High Utilizers
Seiten
2021
Chapman & Hall/CRC (Verlag)
978-1-032-08868-6 (ISBN)
Chapman & Hall/CRC (Verlag)
978-1-032-08868-6 (ISBN)
This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges posed by this problem.
Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.
Key Features:
Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes
Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers
Presents descriptive data driven methods for the high utilizer population
Identifies a best-fitting linear and tree-based regression model to account for patients’ acute and chronic condition loads and demographic characteristics
Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.
Key Features:
Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes
Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers
Presents descriptive data driven methods for the high utilizer population
Identifies a best-fitting linear and tree-based regression model to account for patients’ acute and chronic condition loads and demographic characteristics
Chengliang Yang, Department of Computer Science, University of Florida Chris Delcher, Institute of Child Health Policy, University of Florida Elizabeth Shenkman, Institute of Child Health Policy, University of Florida Sanjay Ranka, Department of Computer Science, University of Florida.
Introduction. Overview of Healthcare Data. Machine Learning Modeling from Healthcare Data. Machine Learning Modeling from Healthcare Data. Descriptive Analysis of High Utlizers. Residuals Analysis for Identifying High Utilizers.Machine Learning Results for High Utilizers.
Erscheinungsdatum | 01.07.2021 |
---|---|
Reihe/Serie | Chapman & Hall/CRC Big Data Series |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 222 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-10 | 1-032-08868-0 / 1032088680 |
ISBN-13 | 978-1-032-08868-6 / 9781032088686 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
REDLINE (Verlag)
20,00 €
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …
Buch | Hardcover (2024)
Penguin (Verlag)
28,00 €