Practical Machine Learning for Computer Vision
O'Reilly Media (Verlag)
978-1-0981-0236-4 (ISBN)
Google engineers Valliappa Lakshmanan, Martin Goerner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.
You'll learn how to:
Design ML architecture for computer vision tasks
Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task
Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model
Preprocess images for data augmentation and to support learnability
Incorporate explainability and responsible AI best practices
Deploy image models as web services or on edge devices
Monitor and manage ML models
Valliappa (Lak) Lakshmanan is the director of analytics and AI solutions at Google Cloud, where he leads a team building cross-industry solutions to business problems. His mission is to democratize machine learning so that it can be done by anyone anywhere. Martin Goerner is a product manager for Keras/TensorFlow focused on improving the developer experience when using state-of-the-art models. He's passionate about science, technology, coding, algorithms, and everything in between. Ryan Gillard is an AI engineer in Google Cloud's Professional Services organization, where he builds ML models for a wide variety of industries. He started his career as a research scientist in the hospital and healthcare industry. With degrees in neuroscience and physics, he loves working at the intersection of those disciplines exploring intelligence through mathematics.
Erscheinungsdatum | 10.08.2021 |
---|---|
Verlagsort | Sebastopol |
Sprache | englisch |
Maße | 178 x 233 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
ISBN-10 | 1-0981-0236-3 / 1098102363 |
ISBN-13 | 978-1-0981-0236-4 / 9781098102364 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich