Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn (eBook)
768 Seiten
MITP Verlags GmbH & Co. KG
978-3-7475-0215-0 (ISBN)
Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings
Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib
Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen
Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.
Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.
Ein sicherer Umgang mit Python wird vorausgesetzt.
Aus dem Inhalt:
- Trainieren von Lernalgorithmen und Implementierung in Python
- Gängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random Forest
- Natural Language Processing zur Klassifizierung von Filmbewertungen
- Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten
- Deep-Learning-Verfahren für die Bilderkennung
- Datenkomprimierung durch Dimensionsreduktion
- Training Neuronaler Netze und GANs mit TensorFlow 2
- Kombination verschiedener Modelle für das Ensemble Learning
- Einbettung von Machine-Learning-Modellen in Webanwendungen
- Stimmungsanalyse in Social Networks
- Modellierung sequenzieller Daten durch rekurrente Neuronale Netze
- Reinforcement Learning und Implementierung von Q-Learning-Algorithmen
Erscheint lt. Verlag | 3.3.2021 |
---|---|
Reihe/Serie | mitp Professional |
Sprache | deutsch |
Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
Schlagworte | Algorithmen • Big Data • Buch • Clusteranalyse • Data Science • Datenanalyse • Datenverarbeitung • Deep learning • machine learning • mitp • Neuronale Netze • NumPy • predictive analytics • Python • Regressionsanalyse • Scikit Learn • SciPy • Sentiment Analyse • tensorflow |
ISBN-10 | 3-7475-0215-6 / 3747502156 |
ISBN-13 | 978-3-7475-0215-0 / 9783747502150 |
Haben Sie eine Frage zum Produkt? |
Größe: 30,3 MB
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich