Data Science for Public Policy - Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall

Data Science for Public Policy

Buch | Hardcover
XIV, 363 Seiten
2021 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-71351-5 (ISBN)
69,54 inkl. MwSt
This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analyst's time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data.

Jeffrey C. Chen: (1) Chief Innovation Officer, U.S. Bureau of Economic Analysis, (2) AdjunctProfessor, Georgetown UniversityDaniel S. Hammer: (1) Founder and CEO, Earthrise Media, (2) Fellow, National GeographicSociety Edward A. Rubin: (1) Assistant Professor, University of Oregon (Dept. of Economics)

An Introduction.- The Case for Programming.- Elements of Programming.- Transforming Data.- Record Linkage.- Exploratory Data Analysis.- Regression Analysis.- Framing Classification.- Three Quantitative Perspectives.- Prediction.- Cluster Analysis.- Spatial Data.- Natural Language.- The Ethics of Data Science.- Developing Data Products.- Building Data Teams.- Appendix A: Planning a Data Product.- Appendix B: Interview Questions.

Erscheinungsdatum
Reihe/Serie Springer Series in the Data Sciences
Zusatzinfo XIV, 363 p. 123 illus., 111 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 210 x 279 mm
Gewicht 1162 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte data sciences • Econometrics • programming • Public Policy • R • Statistics
ISBN-10 3-030-71351-2 / 3030713512
ISBN-13 978-3-030-71351-5 / 9783030713515
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99