Adversary-Aware Learning Techniques and Trends in Cybersecurity (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
X, 227 Seiten
Springer International Publishing (Verlag)
978-3-030-55692-1 (ISBN)

Lese- und Medienproben

Adversary-Aware Learning Techniques and Trends in Cybersecurity -
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is intended to give researchers and practitioners in the cross-cutting fields of artificial intelligence, machine learning (AI/ML) and cyber security up-to-date and in-depth knowledge of recent techniques for improving the vulnerabilities of AI/ML systems against attacks from malicious adversaries. The ten chapters in this book, written by eminent researchers in AI/ML and cyber-security, span diverse, yet inter-related topics including game playing AI and game theory as defenses against attacks on AI/ML systems, methods for effectively addressing vulnerabilities of AI/ML operating in large, distributed environments like Internet of Things (IoT) with diverse data modalities, and, techniques to enable AI/ML systems to intelligently interact with humans that could be malicious adversaries and/or benign teammates. Readers of this book will be equipped with definitive information on recent developments suitable for countering adversarial threats in AI/ML systems towards making them operate in a safe, reliable and seamless manner.


Prithviraj (Raj) Dasgupta is a computer engineer in the Distributed Systems Section, Information Technology Division at the U.S. Naval Research Laboratory, Washington D.C. His research interests are in the areas of artificial intelligence, multi-agent systems, game theory and machine learning. From 2001 through 2019, he was a professor in the Computer Science Department at the University of Nebraska, Omaha, where he had founded and directed the CMANTIC Robotics Lab. His lab received federal funding of over $4 million and established successful, funded multi-university collaborations across multiple disciplines including mechanical and electrical engineering, surgery and biomechanics. He has published over 150 papers in leading journals and conferences in his area and serves on the program committee of major AI conferences including AAAI, IJCAI, and AAMAS; IEEE conferences ICRA, IROS, and ICARSC; and regularly reviews manuscripts for premier journals in the areas of machine learning, multi-agent systems and robotics. He has mentored several Ph.D., Masters and undergraduate students and has continued involvement in STEM mentoring activities for high school students. Dr. Dasgupta is a senior member of IEEE. He received the highest research award from the University of Nebraska, Omaha, called ADROCA, in 2017. He received his Ph.D. and M.S. in Computer Engineering from the University of California, Santa Barbara and his B. Engg. in Computer Science from Jadavpur University, India.

Joseph B. Collins heads the Intelligent Distributed Systems Section in the Information Management & Decision Architectures Branch of the Information Technology Division at the Naval Research Laboratory (NRL). He received his Ph.D. in Physics from Brown University and has worked at NRL for over 30 years where he has investigated, designed and developed intelligent decision support systems as components of Navy simulation, command and control, and test and evaluation architectures. Over his career he has authored a variety of papers, conference publications, and book chapters. A recurring theme in his work for the Navy is the integration of sensor data and other information with analytical and physics-based models to arrive at intelligent decisions.

Ranjeev Mittu is the Branch Head for the Information Management and Decision Architectures Branch within the Information Technology Division at the U.S. Naval Research Laboratory.  Mr. Mittu leads a multidisciplinary group of scientists and engineers that conduct research in visual analytics, human performance assessment, decision support systems, and enterprise systems development. His research expertise is in multi-agent systems, artificial intelligence, machine learning, data mining, and pattern recognition and anomaly detection. He has a track record for transitioning technology solutions to the operational community, and received a technology transfer award at NRL in August 2012 for his contributions to USTRANSCOM.  He has authored one book, coedited five books, and written numerous book chapters and conference publications and received an MS in Electrical Engineering from The Johns Hopkins University. He is currently participating in (1) The Technical Cooperation Program (TTCP) which promotes scientific exchange between New Zealand, UK, Australia, Canada and USA; (2) the NATO Information Systems Technology Panel; and (3) the DoD Reliance 21 C4I Community of Interest.  He has previously served as a Subject Matter Expert for the Joint IED Defeat Organization (2007-2008), participated as a member of the Netcentric Systems Test working group in collaboration with the U.S. Army Program Executive Office for Simulation, Training, and Instrumentation (PEO STRI), and served on NRL's Invention Evaluation Board (IEB) to evaluate technologies and concepts for potential filing with the USPTO (2006-2008).
Erscheint lt. Verlag 22.1.2021
Zusatzinfo X, 227 p. 68 illus., 50 illus. in color.
Sprache englisch
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Schlagworte adversairal robots • Adversarial Machine Learning • Automated Decision Making • Cyber-Physical Systems • cyber security • Deep learning • Game Theory • generative adversarial networks • Multi-agent Systems • security threats and vulnerabilities in machine learning
ISBN-10 3-030-55692-1 / 3030556921
ISBN-13 978-3-030-55692-1 / 9783030556921
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Praxishandbuch zu Krisenmanagement und Krisenkommunikation

von Holger Kaschner

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
34,99
Methodische Kombination von IT-Strategie und IT-Reifegradmodell

von Markus Mangiapane; Roman P. Büchler

eBook Download (2024)
Springer Vieweg (Verlag)
42,99