Hilbert Spaces and Its Applications
Nova Science Publishers Inc (Verlag)
978-1-5361-8983-4 (ISBN)
Preface; A Newton-Traub-Like Fifth Convergence Order Method in Hilbert Space; Correcting and extending the applicability of two fast algorithms for solving systems; Extended Directional Newton-Type Methods; Extended Kantorovich Theorem for Generalized Equations and Variational Inequalities; Extended the Applicability of Newtons Method for Equations with Monotone Operator; Improved Local Convergence for a Proximal Gauss-Newton Solver; Improved Error Estimates for Some Newton-type Methods; Two Non Classical Quantum Logic of Projections in Hilbert space; Extended Fourth Order Newton-Like Method under w-continuity for Solving Equations; On the semi-local convergence of Halleys method: An extension; Semi local convergence criterion of Newtons algorithm for singular systems under constant rank derivatives: An extension; Extending the Gauss-Newton-Algorithm under l-average continuity conditions; On the solution of generalized equations in Hilbert space; Newtons algorithm on Riemannian manifolds: Extended Kantorovichs theorem; Extended Gauss-Newton-Kurchatov Algorithm for least squares problems; Extended Gauss-Newton Algorithm for convex composite optimization; Extended local convergence of Newtons Algorithm on Riemannian manifolds; Uniqueness of the solution of equations in Hilbert space I; Uniqueness of the solution of equations in Hilbert space II; Extended Newtons Algorithm on Riemannian manifolds with values in a cone; Extended Gauss-Newton Algorithm on Riemannian manifolds under L- average Lipschitz conditions; New Results on Berezin Number Inequalities in Reproducing Kernel Hilbert Space; Glossary of Symbols; Index.
Erscheinungsdatum | 25.02.2021 |
---|---|
Sprache | englisch |
Gewicht | 460 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 1-5361-8983-9 / 1536189839 |
ISBN-13 | 978-1-5361-8983-4 / 9781536189834 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich