On Central Critical Values of the Degree Four L-Functions for GSp(4)
The Fundamental Lemma
2003
American Mathematical Society (Verlag)
978-0-8218-3328-5 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-3328-5 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Proves two equalities of local Kloosterman integrals on $/mathrm{GSp}/left(4/right)$, the group of $4$ by $4$ symplectic similitude matrices. This book conjectures that both of Jacquet's relative trace formulas for the central critical values of the $L$-functions for $/mathrm{g1}/left(2/right)$ in [{J1}] and [{J2}].
In this paper we prove two equalities of local Kloosterman integrals on $/mathrm{GSp}/left(4/right)$, the group of $4$ by $4$ symplectic similitude matrices. One is an equality between the Novodvorsky orbital integral and the Bessel orbital integral and the other one is an equality between the Bessel orbital integral and the quadratic orbital integral. We conjecture that both of Jacquet's relative trace formulas for the central critical values of the $L$-functions for $/mathrm{g1}/left(2/right)$ in [{J1}] and [{J2}], where Jacquet has given another proof of Waldspurger's result [{W2}], generalize to the ones for the central critical values of the degree four spinor $L$-functions for $/mathrm{GSp}/left(4/right)$.We believe that our approach will lead us to a proof and also a precise formulation of a conjecture of Bocherer [{B}] and its generalization. Support for this conjecture may be found in the important paper of Bocherer and Schulze-Pillot [{BSP}]. Also a numerical evidence has been recently given by Kohnen and Kuss [{KK}]. Our results serve as the fundamental lemmas for our conjectural relative trace formulas for the main relevant double cosets.
In this paper we prove two equalities of local Kloosterman integrals on $/mathrm{GSp}/left(4/right)$, the group of $4$ by $4$ symplectic similitude matrices. One is an equality between the Novodvorsky orbital integral and the Bessel orbital integral and the other one is an equality between the Bessel orbital integral and the quadratic orbital integral. We conjecture that both of Jacquet's relative trace formulas for the central critical values of the $L$-functions for $/mathrm{g1}/left(2/right)$ in [{J1}] and [{J2}], where Jacquet has given another proof of Waldspurger's result [{W2}], generalize to the ones for the central critical values of the degree four spinor $L$-functions for $/mathrm{GSp}/left(4/right)$.We believe that our approach will lead us to a proof and also a precise formulation of a conjecture of Bocherer [{B}] and its generalization. Support for this conjecture may be found in the important paper of Bocherer and Schulze-Pillot [{BSP}]. Also a numerical evidence has been recently given by Kohnen and Kuss [{KK}]. Our results serve as the fundamental lemmas for our conjectural relative trace formulas for the main relevant double cosets.
Statement of results Gauss sum, Kloosterman sum and Salie sum Matrix argument Kloosterman sums Evaluation of the Novodvorsky orbital integral Evaluation of the Bessel orbital integral Evaluation of the quadratic orbital integral Bibliography.
Erscheint lt. Verlag | 1.12.2003 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Zusatzinfo | bibliography |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 312 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
ISBN-10 | 0-8218-3328-6 / 0821833286 |
ISBN-13 | 978-0-8218-3328-5 / 9780821833285 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95 €
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90 €