Numerical Semigroups and Applications (eBook)
XIV, 138 Seiten
Springer International Publishing (Verlag)
978-3-030-54943-5 (ISBN)
This book is an extended and revised version of 'Numerical Semigroups with Applications,' published by Springer as part of the RSME series. Like the first edition, it presents applications of numerical semigroups in Algebraic Geometry, Number Theory and Coding Theory. It starts by discussing the basic notions related to numerical semigroups and those needed to understand semigroups associated with irreducible meromorphic series. It then derives a series of applications in curves and factorization invariants. A new chapter is included, which offers a detailed review of ideals for numerical semigroups. Based on this new chapter, descriptions of the module of Kähler differentials for an algebroid curve and for a polynomial curve are provided. Moreover, the concept of tame degree has been included, and is viewed in relation to other factorization invariants appearing in the first edition. This content highlights new applications of numerical semigroups and their ideals, following in the spirit of the first edition.
Abdallah Assi graduated in Mathematics from the University Joseph Fourier (Grenoble, France). He holds a Ph.D. in Mathematics from the same university and completed his 'HDR Habilitation à diriger les recherches' at the University of Angers (France). He has held a permanent position at the Department of Mathematics at the University of Angers since 1995. His research interests include affine geometry, numerical semigroups, and the theory of singularities.
Pedro A. García-Sánchez was born in Granada, Spain, in 1969. Since 1992 he has taught at the Departmento de Algebra at the Universidad de Granada. He graduated in Mathematics and in Computer Science (Diploma) in 1992 and defended his PhD thesis on 'Affine semigroups' in 1996. Since 1999 he has held a permanent position at the Universidad de Granada. His main research interests are numerical semigroups, commutative monoids and nonunique factorization invariants.
Marco D'Anna obtained his PhD form the University of Roma La Sapienza in 1997 and became an Associated Professor at Catania University in 2001, where he has been supervisor of many PhD and master students. He has published several research papers on Commutative Algebra, mainly on one-dimensional rings and on numerical semigroup rings.
Erscheint lt. Verlag | 1.10.2020 |
---|---|
Reihe/Serie | RSME Springer Series | RSME Springer Series |
Zusatzinfo | XIV, 138 p. 8 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Mathematik / Informatik ► Mathematik | |
Schlagworte | AG codes • Algebraic Curve • combinatorics • Nonunique factorization invariants • Numerical semigroup |
ISBN-10 | 3-030-54943-7 / 3030549437 |
ISBN-13 | 978-3-030-54943-5 / 9783030549435 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich