Theory of Algebraic Surfaces (eBook)
XIII, 75 Seiten
Springer Singapore (Verlag)
978-981-15-7380-4 (ISBN)
This is an English translation of the book in Japanese, published as the volume 20 in the series of Seminar Notes from The University of Tokyo that grew out of a course of lectures by Professor Kunihiko Kodaira in 1967. It serves as an almost self-contained introduction to the theory of complex algebraic surfaces, including concise proofs of Gorenstein's theorem for curves on a surface and Noether's formula for the arithmetic genus. It also discusses the behavior of the pluri-canonical maps of surfaces of general type as a practical application of the general theory. The book is aimed at graduate students and also at anyone interested in algebraic surfaces, and readers are expected to have only a basic knowledge of complex manifolds as a prerequisite.
Erscheint lt. Verlag | 17.9.2020 |
---|---|
Reihe/Serie | SpringerBriefs in Mathematics | SpringerBriefs in Mathematics |
Übersetzer | Kazuhiro Konno |
Zusatzinfo | XIII, 75 p. 45 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | canonical line bundles • exact sequence • K3 surfaces • Riemann--Roch theorem • the first Chern class |
ISBN-10 | 981-15-7380-8 / 9811573808 |
ISBN-13 | 978-981-15-7380-4 / 9789811573804 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich