Combinatorics - Russell Merris

Combinatorics

(Autor)

Buch | Hardcover
576 Seiten
2003 | 2nd edition
Wiley-Interscience (Verlag)
978-0-471-26296-1 (ISBN)
204,32 inkl. MwSt
Updating and expanding upon the successful First Edition of Combinatorics, this new edition provides the foundation for mastering combinatorics. Blending an engaging style with mathematical rigor, Professor Merris provides a uniquely flexible tool for a wide variety of approaches to combinatorics.
A mathematical gem–freshly cleaned and polished This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course.

Features retained from the first edition:



Lively and engaging writing style
Timely and appropriate examples
Numerous well-chosen exercises
Flexible modular format
Optional sections and appendices

Highlights of Second Edition enhancements:



Smoothed and polished exposition, with a sharpened focus on key ideas
Expanded discussion of linear codes
New optional section on algorithms
Greatly expanded hints and answers section
Many new exercises and examples

RUSSELL MERRIS, PhD, is Professor of Mathematics and Computer Science at California State University, Hayward. Among his other books is Graph Theory, also published by Wiley.

Preface ix

Chapter 1 The Mathematics of Choice 1

1.1. The Fundamental Counting Principle 2

1.2. Pascal’s Triangle 10

* 1.3. Elementary Probability 21

* 1.4. Error-Correcting Codes 33

1.5. Combinatorial Identities 43

1.6. Four Ways to Choose 56

1.7. The Binomial and Multinomial Theorems 66

1.8. Partitions 76

1.9. Elementary Symmetric Functions 87

* 1.10. Combinatorial Algorithms 100

Chapter 2 The Combinatorics of Finite Functions 117

2.1. Stirling Numbers of the Second Kind 117

2.2. Bells, Balls, and Urns 128

2.3. The Principle of Inclusion and Exclusion 140

2.4. Disjoint Cycles 152

2.5. Stirling Numbers of the First Kind 161

Chapter 3 Pólya’s Theory of Enumeration 175

3.1. Function Composition 175

3.2. Permutation Groups 184

3.3. Burnside’s Lemma 194

3.4. Symmetry Groups 206

3.5. Color Patterns 218

3.6. Pólya’s Theorem 228

3.7. The Cycle Index Polynomial 241

Chapter 4 Generating Functions 253

4.1. Difference Sequences 253

4.2. Ordinary Generating Functions 268

4.3. Applications of Generating Functions 284

4.4. Exponential Generating Functions 301

4.5. Recursive Techniques 320

Chapter 5 Enumeration in Graphs 337

5.1. The Pigeonhole Principle 338

* 5.2. Edge Colorings and Ramsey Theory 347

5.3. Chromatic Polynomials 357

* 5.4. Planar Graphs 372

5.5. Matching Polynomials 383

5.6. Oriented Graphs 394

5.7. Graphic Partitions 408

Chapter 6 Codes and Designs 421

6.1. Linear Codes 422

6.2. Decoding Algorithms 432

6.3. Latin Squares 447

6.4. Balanced Incomplete Block Designs 461

Appendix A1 Symmetric Polynomials 477

Appendix A2 Sorting Algorithms 485

Appendix A3 Matrix Theory 495

Bibliography 501

Hints and Answers to Selected Odd-Numbered Exercises 503

Index of Notation 541

Index 547

Erscheint lt. Verlag 28.8.2003
Reihe/Serie Wiley Series in Discrete Mathematics and Optimization
Zusatzinfo Charts: 4 B&W, 0 Color; Photos: 1 B&W, 0 Color; Drawings: 125 B&W, 0 Color; Tables: 41 B&W, 0 Color; Graphs: 16 B&W, 0 Color
Sprache englisch
Maße 160 x 241 mm
Gewicht 930 g
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 0-471-26296-X / 047126296X
ISBN-13 978-0-471-26296-1 / 9780471262961
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices

von Volker Diekert; Manfred Kufleitner; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
64,95