Algorithmic Learning Theory
Springer Berlin (Verlag)
978-3-540-00170-6 (ISBN)
Editors' Introduction.- Editors' Introduction.- Invited Papers.- Mathematics Based on Learning.- Data Mining with Graphical Models.- On the Eigenspectrum of the Gram Matrix and Its Relationship to the Operator Eigenspectrum.- In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project.- Learning Structure from Sequences, with Applications in a Digital Library.- Regular Contributions.- On Learning Monotone Boolean Functions under the Uniform Distribution.- On Learning Embedded Midbit Functions.- Maximizing Agreements and CoAgnostic Learning.- Optimally-Smooth Adaptive Boosting and Application to Agnostic Learning.- Large Margin Classification for Moving Targets.- On the Smallest Possible Dimension and the Largest Possible Margin of Linear Arrangements Representing Given Concept Classes Uniform Distribution.- A General Dimension for Approximately Learning Boolean Functions.- The Complexity of Learning Concept Classes with Polynomial General Dimension.- On the Absence of Predictive Complexity for Some Games.- Consistency Queries in Information Extraction.- Ordered Term Tree Languages which Are Polynomial Time Inductively Inferable from Positive Data.- Reflective Inductive Inference of Recursive Functions.- Classes with Easily Learnable Subclasses.- On the Learnability of Vector Spaces.- Learning, Logic, and Topology in a Common Framework.- A Pathology of Bottom-Up Hill-Climbing in Inductive Rule Learning.- Minimised Residue Hypotheses in Relevant Logic.- Compactness and Learning of Classes of Unions of Erasing Regular Pattern Languages.- A Negative Result on Inductive Inference of Extended Pattern Languages.- RBF Neural Networks and Descartes' Rule of Signs.- Asymptotic Optimality of Transductive Confidence Machine.- An Efficient PAC Algorithm forReconstructing a Mixture of Lines.- Constraint Classification: A New Approach to Multiclass Classification.- How to Achieve Minimax Expected Kullback-Leibler Distance from an Unknown Finite Distribution.- Classification with Intersecting Rules.- Feedforward Neural Networks in Reinforcement Learning Applied to High-Dimensional Motor Control.
Erscheint lt. Verlag | 13.11.2002 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XII, 420 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 603 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmic Learning • algorithms • boolean function • Computational Learning • concept learning • Data Mining • Discovery Science • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Heuristics • Inductive Inference • learning • Learning Algorithms • Learning theory • Logic • machine learning • Neural Network Learning • programming • Statistical Learning • Support Vector Machines |
ISBN-10 | 3-540-00170-0 / 3540001700 |
ISBN-13 | 978-3-540-00170-6 / 9783540001706 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich