Fog Data Analytics for IoT Applications -

Fog Data Analytics for IoT Applications (eBook)

Next Generation Process Model with State of the Art Technologies

Sudeep Tanwar (Herausgeber)

eBook Download: PDF
2020 | 1st ed. 2020
XV, 497 Seiten
Springer Singapore (Verlag)
978-981-15-6044-6 (ISBN)
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book discusses the unique nature and complexity of fog data analytics (FDA) and develops a comprehensive taxonomy abstracted into a process model. The exponential increase in sensors and smart gadgets (collectively referred as smart devices or Internet of things (IoT) devices) has generated significant amount of heterogeneous and multimodal data, known as big data. To deal with this big data, we require efficient and effective solutions, such as data mining, data analytics and reduction to be deployed at the edge of fog devices on a cloud. Current research and development efforts generally focus on big data analytics and overlook the difficulty of facilitating fog data analytics (FDA). This book presents a model that addresses various research challenges, such as accessibility, scalability, fog nodes communication, nodal collaboration, heterogeneity, reliability, and quality of service (QoS) requirements, and includes case studies demonstrating its implementation. Focusing on FDA in IoT and requirements related to Industry 4.0, it also covers all aspects required to manage the complexity of FDA for IoT applications and also develops a comprehensive taxonomy.

Dr. Sudeep Tanwar is an Associate Professor at the Computer Engineering Department at the Institute of Technology of Nirma University, India, and was a Visiting Professor at Jan Wyzykowski University in Polkowice, Poland, and the University of Pitesti, Romani. He received his Ph.D. in Wireless Sensor Networks from the Faculty of Engineering and Technology, Mewar University, India, in 2016. He has received three best research paper awards, including two from top-tier international conferences (IEEE-ICC and IEEE-GLOBECOM). His current interests include routings issues in WSN, blockchain technology, smart grid, and fog computing. He has authored/edited six books: Routing in Heterogeneous Wireless Sensor Networks (ISBN: 978-3-330-02892-0), Big Data Analytics (ISBN: 978-93-83992-25-8), Mobile Computing (ISBN: 978-93-83992-25-6), Energy Conservation for IoT Devices: Concepts, Paradigms and Solutions (ISBN: 978-981-13-7398-5), and Multimedia Big Data Computing for IoT Applications: Concepts, Paradigms and Solutions (ISBN: 978-981-13-8759-3). He is an Associate Editor of the Security and Privacy Journal and is a member of IAENG, ISTE, and CSTA.?


This book discusses the unique nature and complexity of fog data analytics (FDA) and develops a comprehensive taxonomy abstracted into a process model. The exponential increase in sensors and smart gadgets (collectively referred as smart devices or Internet of things (IoT) devices) has generated significant amount of heterogeneous and multimodal data, known as big data. To deal with this big data, we require efficient and effective solutions, such as data mining, data analytics and reduction to be deployed at the edge of fog devices on a cloud. Current research and development efforts generally focus on big data analytics and overlook the difficulty of facilitating fog data analytics (FDA). This book presents a model that addresses various research challenges, such as accessibility, scalability, fog nodes communication, nodal collaboration, heterogeneity, reliability, and quality of service (QoS) requirements, and includes case studies demonstrating its implementation. Focusing on FDAin IoT and requirements related to Industry 4.0, it also covers all aspects required to manage the complexity of FDA for IoT applications and also develops a comprehensive taxonomy.
Erscheint lt. Verlag 25.8.2020
Reihe/Serie Studies in Big Data
Studies in Big Data
Zusatzinfo XV, 497 p. 209 illus., 172 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik
Wirtschaft
Schlagworte Big Data • Data Analysis • data collection • Data reduction • Data Security & Privacy • Distributed system • Fog Data Analytics • Social Media • System Intelligence
ISBN-10 981-15-6044-7 / 9811560447
ISBN-13 978-981-15-6044-6 / 9789811560446
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43