Advanced R 4 Data Programming and the Cloud - Matt Wiley, Joshua F. Wiley

Advanced R 4 Data Programming and the Cloud (eBook)

Using PostgreSQL, AWS, and Shiny
eBook Download: PDF
2020 | 2nd ed.
XIII, 433 Seiten
Apress (Verlag)
978-1-4842-5973-3 (ISBN)
Systemvoraussetzungen
66,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Program for data analysis using R and learn practical skills to make your work more efficient. This revised book explores how to automate running code and the creation of reports to share your results, as well as writing functions and packages. It includes key R 4 features such as a new color palette for charts, an enhanced reference counting system, and normalization of matrix and array types where matrix objects now formally inherit from the array class, eliminating inconsistencies.

Advanced R 4 Data Programming and the Cloud is not designed to teach advanced R programming nor to teach the theory behind statistical procedures. Rather, it is designed to be a practical guide moving beyond merely using R; it shows you how to program in R to automate tasks. 

This book will teach you how to manipulate data in modern R structures and includes connecting R to databases such as PostgreSQL, cloud services such as Amazon Web Services (AWS), and digital dashboards such as Shiny. Each chapter also includes a detailed bibliography with references to research articles and other resources that cover relevant conceptual and theoretical topics.

What You Will Learn

  • Write and document R functions using R 4
  • Make an R package and share it via GitHub or privately
  • Add tests to R code to ensure it works as intended
  • Use R to talk directly to databases and do complex data management
  • Run R in the Amazon cloud
  • Deploy a Shiny digital dashboard
  • Generate presentation-ready tables and reports using R
Who This Book Is For

Working professionals, researchers, and students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to take their R coding and programming to the next level.

Matt Wiley leads institutional effectiveness, research, and assessment at Victoria College, facilitating strategic and unit planning, data-informed decision making, and state/regional/federal accountability. As a tenured, associate professor of mathematics, he won awards in both mathematics education (California) and student engagement (Texas). Matt earned degrees in computer science, business, and pure mathematics from the University of California and Texas A&M systems.

Outside academia, he co-authors books about the popular R programming language and was managing partner of a statistical consultancy for almost a decade. He has programming experience with R, SQL, C++, Ruby, Fortran, and JavaScript.

A programmer, a published author, a mathematician, and a transformational leader, Matt has always melded his passion for writing with his joy of logical problem solving and data science. From the boardroom to the classroom, he enjoys finding dynamic ways to partner with interdisciplinary and diverse teams to make complex ideas and projects understandable and solvable.

Joshua F. Wiley is a lecturer in the Turner Institute for Brain and Mental Health and School of Psychological Sciences at Monash University. He earned his PhD from the University of California, Los Angeles and completed his post-doctoral training in primary care and prevention. His research uses advanced quantitative methods to understand the dynamics between psychosocial factors, sleep and other health behaviours in relation to psychological and physical health. He develops or co-develops a number of R packages including varian, a package to conduct Bayesian scale-location structural equation models, MplusAutomation, a popular package that links R to the commercial Mplus software, extraoperators for faster logical operations, multilevelTools for diagnostics, effect sizes, and easy display of multilevel / mixed effects models results, and miscellaneous functions to explore data or speed up analysis in JWileymisc.


Program for data analysis using R and learn practical skills to make your work more efficient. This revised book explores how to automate running code and the creation of reports to share your results, as well as writing functions and packages. It includes key R 4 features such as a new color palette for charts, an enhanced reference counting system, and normalization of matrix and array types where matrix objects now formally inherit from the array class, eliminating inconsistencies.Advanced R 4 Data Programming and the Cloud is not designed to teach advanced R programming nor to teach the theory behind statistical procedures. Rather, it is designed to be a practical guide moving beyond merely using R; it shows you how to program in R to automate tasks. This book will teach you how to manipulate data in modern R structures and includes connecting R to databases such as PostgreSQL, cloud services such as Amazon Web Services (AWS), and digital dashboards such as Shiny. Each chapter also includes a detailed bibliography with references to research articles and other resources that cover relevant conceptual and theoretical topics.What You Will LearnWrite and document R functions using R 4Make an R package and share it via GitHub or privatelyAdd tests to R code to ensure it works as intendedUse R to talk directly to databases and do complex data managementRun R in the Amazon cloudDeploy a Shiny digital dashboardGenerate presentation-ready tables and reports using RWho This Book Is ForWorking professionals, researchers, and students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to take their R coding and programming to the next level.
Erscheint lt. Verlag 16.7.2020
Zusatzinfo XIII, 433 p. 65 illus., 9 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Compilerbau
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Schlagworte Analysis • Analytics • Big Data • Data • Data Science • programming • R • r 4 • SAS • SPSS • Statistics
ISBN-10 1-4842-5973-4 / 1484259734
ISBN-13 978-1-4842-5973-3 / 9781484259733
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An In-Depth Guide to the Spring Framework

von Iuliana Cosmina; Rob Harrop; Chris Schaefer; Clarence Ho

eBook Download (2023)
Apress (Verlag)
62,99