Effective Statistical Learning Methods for Actuaries II
Springer International Publishing (Verlag)
978-3-030-57555-7 (ISBN)
This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities.
The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, master's students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful.
This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurancedata analytics with applications to P&C, life and health insurance.
lt;br>Michel Denuit holds masters degrees in mathematics and actuarial science as well as a PhD in statistics from ULB (Brussels). Since 1999, he has been professor of actuarial mathematics at UCLouvain (Louvain-la-Neuve, Belgium), where he serves as Director of the masters program in Actuarial Science. He has also held several visiting appointments, including at Lausanne (Switzerland) and Lyon (France). He has published extensively and has conducted many R&D projects with major (re)insurance companies over the past 20 years. Donatien Hainaut is a civil engineer in applied mathematics and an actuary. He also holds a masters in financial risk management and a PhD in actuarial science from UCLouvain (Louvain-La-Neuve, Belgium). After a few years in the financial industry, he joined Rennes School of Business (France) and was visiting lecturer at ENSAE (Paris, France). Since 2016, he has been professor at UCLouvain, in the Institute of Statistics, Biostatistics and Actuarial Science. He serves as Director of the UCLouvain Masters in Data Science.
Julien Trufin holds master's degrees in physics and actuarial science as well as a Ph.D. in actuarial science from UCLouvain (Louvain-la-Neuve, Belgium). After a few years in the insurance industry, he joined the actuarial school at Laval University (Quebec, Canada). Since 2014, he has been Professor in actuarial science at the department of mathematics, ULB (Brussels, Belgium). He also holds visiting appointments in Lausanne (Switzerland) and in Louvain-la-Neuve (Belgium). He is an Associate Editor for the Journals "Astin Bulletin" and "Methodology and Computing in Applied Probability" and a qualified actuary of the Institute of Actuaries in Belgium (IA
BE).
Chapter 1: Introductio.- Chapter 2 : Performance Evaluation.- Chapter 3 Regression Trees.- Chapter 4 Bagging Trees and Random Forests.- Chapter 5 Boosting Trees.- Chapter 6 Other Measures for Model Comparison.
Erscheinungsdatum | 18.11.2020 |
---|---|
Reihe/Serie | Springer Actuarial | Springer Actuarial Lecture Notes |
Zusatzinfo | X, 228 p. 68 illus., 6 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 454 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Statistik | |
Wirtschaft ► Betriebswirtschaft / Management | |
Schlagworte | actuarial modeling • insurance risk classification • machine learning • supervised learning • tree-based methods for insurance |
ISBN-10 | 3-030-57555-1 / 3030575551 |
ISBN-13 | 978-3-030-57555-7 / 9783030575557 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich