Linear Spaces with Few Lines
Springer Berlin (Verlag)
978-3-540-54720-4 (ISBN)
Definition and basic properties of linear spaces.- Lower bounds for the number of lines.- Basic properties and results of (n+1,1)-designs.- Points of degree n.- Linear spaces with few lines.- Embedding (n+1,1)-designs into projective planes.- An optimal bound for embedding linear spaces into projective planes.- The theorem of totten.- Linear spaces with n2+n+1 points.- A hypothetical structure.- Linear spaces with n2+n+2 lines.- Points of degree n and another characterization of the linear spaces L(n,d).- The non-existence of certain (7,1)-designs and determination of A(5) and A(6).- A result on graph theory with an application to linear spaces.- Linear spaces in which every long line meets only few lines.- s-fold inflated projective planes.- The Dowling Wilson Conjecture.- Uniqueness of embeddings.
Erscheint lt. Verlag | 23.10.1991 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XIV, 202 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 334 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Graphentheorie |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Boundary element method • Character • combinatorics • Design • Embeddings • EXIST • Field • Finite • Graph • graph theory • Linear Space • Proof • techniques • Theorem |
ISBN-10 | 3-540-54720-7 / 3540547207 |
ISBN-13 | 978-3-540-54720-4 / 9783540547204 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich