Feature Engineering and Computational Intelligence in ECG Monitoring -

Feature Engineering and Computational Intelligence in ECG Monitoring (eBook)

Jianqing Li, Chengyu Liu (Herausgeber)

eBook Download: PDF
2020 | 1st ed. 2020
X, 268 Seiten
Springer Singapore (Verlag)
978-981-15-3824-7 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book discusses feature engineering and computational intelligence solutions for ECG monitoring, with a particular focus on how these methods can be efficiently used to address the emerging challenges of dynamic, continuous & long-term individual ECG monitoring and real-time feedback. By doing so, it provides a 'snapshot' of the current research at the interface between physiological signal analysis and machine learning. It also helps clarify a number of dilemmas and encourages further investigations in this field, to explore rational applications of feature engineering and computational intelligence in ECG monitoring. The book is intended for researchers and graduate students in the field of biomedical engineering, ECG signal processing, and intelligent healthcare.



Dr. Chengyu Liu received his B.S. and Ph.D. degrees in Biomedical Engineering from Shandong University, China, in 2005 and 2010 respectively. He completed his postdoctoral training at Shandong University, China; Newcastle University, UK; and Emory University, USA. He is currently the Interim Dean of the School of Instrument Science and Engineering at Southeast University, a Professor of the State Key Laboratory of Bioelectronics, and the founding Director of the Wearable Heart-Sleep-Emotion Intelligent Monitoring Lab at Southeast University. He is also the founding Chair of the China Physiological Signal Challenge (from 2018), which focuses on challenging ECG signal processing issues. He is a member of the journal committee of the International Federation for Medical and Biological Engineering (IFMBE), an international advisory board member for Physiological Measurement and the Journal of Medical and Biological Engineering. His research topics include wearable ECG & vital-sign monitoring, machine learning for medical big data, early detection, and device development for cardiovascular diseases. He has published over 180 journal/conference papers. 

Dr. Jianqing Li received his B.S. and M.S. degrees in Automatic Technology, and his Ph.D. degree in Measurement Technology and Instruments from the School of Instrument Science and Engineering, Southeast University, China, in 1986, 1990 and 2000 respectively. He is currently the Vice-President of Nanjing Medical University, a Professor at the School of Biomedical Engineering and Informatics, Nanjing Medical University, and a Professor at the School of Instrument Science and Engineering at Southeast University. He is the founding Director of the Key Laboratory of Clinical Medical Engineering in Nanjing Medical University, and the deputy Director of the Jiangsu Key Lab of Remote Measurement and Control at Southeast University, where he leads the research on medical-industry, cross-innovation cooperation, medical device development and clinical applications. His research topics include wearable medical sensors and signal processing, rehabilitation robot technology, and robot telepresence technology. He has been awarded funding for more than 20 research projects and holds over 20 patents.


This book discusses feature engineering and computational intelligence solutions for ECG monitoring, with a particular focus on how these methods can be efficiently used to address the emerging challenges of dynamic, continuous & long-term individual ECG monitoring and real-time feedback. By doing so, it provides a "e;snapshot"e; of the current research at the interface between physiological signal analysis and machine learning. It also helps clarify a number of dilemmas and encourages further investigations in this field, to explore rational applications of feature engineering and computational intelligence in ECG monitoring. The book is intended for researchers and graduate students in the field of biomedical engineering, ECG signal processing, and intelligent healthcare.
Erscheint lt. Verlag 24.6.2020
Zusatzinfo X, 268 p. 101 illus., 77 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Technik Bauwesen
Technik Medizintechnik
Schlagworte Computational Intelligence • ECG Monitoring • electrocardiogram (ECG) • feature engineering • machine learning
ISBN-10 981-15-3824-7 / 9811538247
ISBN-13 978-981-15-3824-7 / 9789811538247
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43