From Polynomials to Sums of Squares - T.H Jackson

From Polynomials to Sums of Squares

(Autor)

Buch | Hardcover
194 Seiten
2020
CRC Press (Verlag)
978-1-138-45432-3 (ISBN)
218,20 inkl. MwSt
Describes a journey through the algebra and number theory based around the central theme of factorization. Providing basic knowledge of rational polynomials, this book introduces other integral domains and sums of squares of integers. It offers illustrations that feature specific examples. It contains practical activities involving the computer.
From Polynomials to Sums of Squares describes a journey through the foothills of algebra and number theory based around the central theme of factorization. The book begins by providing basic knowledge of rational polynomials, then gradually introduces other integral domains, and eventually arrives at sums of squares of integers. The text is complemented with illustrations that feature specific examples. Other than familiarity with complex numbers and some elementary number theory, very little mathematical prerequisites are needed. The accompanying disk enables readers to explore the subject further by removing the tedium of doing calculations by hand. Throughout the text there are practical activities involving the computer.

Jackson, T.H

Preface -- 1 Polynomials in one variable -- 1.1 Polynomials with rational coefficients -- 1.2 Polynomials with coefficients in Zp -- 1.3 Polynomial division -- 1.4 Common divisors of polynomials -- 1.5 Units, irreducibles and the factor theorem -- 1.6 Factorization into irreducible polynomials -- 1.7 Polynomials with integer coefficients -- 1.8 Factorization in Zp [x] and applications to Z[x] -- 1.9 Factorization in Q[x] -- 1.10 Factorizing with the aid of the computer -- Summary of chapter 1 -- Exercises for chapter 1 -- 2 Using polynomials to make new number fields -- 2.1 Roots of irreducible polynomials -- 2.2 The splitting field of xP" - x in Zp [x] -- Summary of chapter 2 -- Exercises for chapter 2 -- 3 Quadratic integers in general and Gaussian integers in particular -- 3.1 Algebraic numbers -- 3.2 Algebraic integers -- 3.3 Quadratic numbers and quadratic integers -- 3.4 The integers of Q(-J=T) -- 3.5 Division with remainder in Z[i] -- 3.6 Prime and composite integers in Z[i] -- Summary of chapter 3 -- Exercises for chapter 3 -- 4 Arithmetic in quadratic domains -- 4.1 Multiplicative norms -- 4.2 Application of norms to units in quadratic domains -- 4.3 Irreducible and prime quadratic integers -- 4.4 Euclidean domains of quadratic integers -- 4.5 Factorization into irreducible integers in quadratic -- domains -- Summary of chapter 4 -- Exercises for chapter 4 -- 5 Composite rational integers and sums of squares -- 5.1 Rational primes -- 5.2 Quadratic residues and the Legendre symbol -- 5.3 Identifying the rational primes that become composite in a quadratic domain -- 5.4 Sums of squares -- Summary of chapter 5 -- Exercises for chapter 5 -- Appendices -- 1 Abstract perspectives -- 1.1 Groups -- 1.2 Rings and integral domains -- 1.3 Divisibility in integral domains -- 1.4 Euclidean domains and factorization into irreducibles -- 1.5 Unique factorization in Euclidean domains -- 1.6 Integral domains and fields -- 1.7 Finite fields -- 2 The product of primitive polynomials -- 3 The Mobius function and cyclotomic polynomials -- 4 Rouches theorem -- 5 Dirichlet's theorem and Pell's equation -- 6 Quadratic reciprocity -- References – Index.

Erscheinungsdatum
Verlagsort London
Sprache englisch
Maße 148 x 210 mm
Gewicht 520 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 1-138-45432-X / 113845432X
ISBN-13 978-1-138-45432-3 / 9781138454323
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich