SQL Server Big Data Clusters - Benjamin Weissman, Enrico van de Laar

SQL Server Big Data Clusters (eBook)

Data Virtualization, Data Lake, and AI Platform
eBook Download: PDF
2020 | 2nd ed.
XVII, 260 Seiten
Apress (Verlag)
978-1-4842-5985-6 (ISBN)
Systemvoraussetzungen
56,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Use this guide to one of SQL Server 2019's most impactful features-Big Data Clusters. You will learn about data virtualization and data lakes for this complete artificial intelligence (AI) and machine learning (ML) platform within the SQL Server database engine. You will know how to use Big Data Clusters to combine large volumes of streaming data for analysis along with data stored in a traditional database. For example, you can stream large volumes of data from Apache Spark in real time while executing Transact-SQL queries to bring in relevant additional data from your corporate, SQL Server database. 

Filled with clear examples and use cases, this book provides everything necessary to get started working with Big Data Clusters in SQL Server 2019. You will learn about the architectural foundations that are made up from Kubernetes, Spark, HDFS, and SQL Server on Linux. You then are shown how to configure and deploy Big Data Clusters in on-premises environments or in the cloud. Next, you are taught about querying. You will learn to write queries in Transact-SQL-taking advantage of skills you have honed for years-and with those queries you will be able to examine and analyze data from a wide variety of sources such as Apache Spark. 

Through the theoretical foundation provided in this book and easy-to-follow example scripts and notebooks, you will be ready to use and unveil the full potential of SQL Server 2019: combining different types of data spread across widely disparate sources into a single view that is useful for business intelligence and machine learning analysis. 


What You Will Learn
  • Install, manage, and troubleshoot Big Data Clusters in cloud or on-premise environments
  • Analyze large volumes of data directly from SQL Server and/or Apache Spark
  • Manage data stored in HDFS from SQL Server as if it were relational data
  • Implement advanced analytics solutions through machine learning and AI
  • Expose different data sources as a single logical source using data virtualization

Who This Book Is For

Data engineers, data scientists, data architects, and database administrators who want to employ data virtualization and big data analytics in their environments


?Ben Weissman is the owner and founder of Solisyon, a consulting firm based in Germany and focused on business intelligence, business analytics, and data warehousing as well as forecasting and budgeting. He is a Microsoft Data Platform MVP, the first German BimlHero, and has been working with SQL Server since SQL Server 6.5. If he is not currently working with data, Ben is probably traveling and exploring the world, running, or enjoying delicious food. You can find Ben on Twitter at @bweissman.

Enrico van de Laar has been working with data in various formats and sizes for over 15 years. He is a data and advanced analytics consultant at Dataheroes where he helps organizations get the most out of their data. He has been a Microsoft Data Platform MVP since 2014 and a frequent speaker at various data-related events all over the world. He writes about a wide variety of Microsoft data-related technologies on his blog at enricovandelaar.com. You can reach Enrico on Twitter at @evdlaar.


Use this guide to one of SQL Server 2019's most impactful features-Big Data Clusters. You will learn about data virtualization and data lakes for this complete artificial intelligence (AI) and machine learning (ML) platform within the SQL Server database engine. You will know how to use Big Data Clusters to combine large volumes of streaming data for analysis along with data stored in a traditional database. For example, you can stream large volumes of data from Apache Spark in real time while executing Transact-SQL queries to bring in relevant additional data from your corporate, SQL Server database. Filled with clear examples and use cases, this book provides everything necessary to get started working with Big Data Clusters in SQL Server 2019. You will learn about the architectural foundations that are made up from Kubernetes, Spark, HDFS, and SQL Server on Linux. You then are shown how to configure and deploy Big Data Clusters in on-premises environments or in the cloud. Next, you are taught about querying. You will learn to write queries in Transact-SQL-taking advantage of skills you have honed for years-and with those queries you will be able to examine and analyze data from a wide variety of sources such as Apache Spark. Through the theoretical foundation provided in this book and easy-to-follow example scripts and notebooks, you will be ready to use and unveil the full potential of SQL Server 2019: combining different types of data spread across widely disparate sources into a single view that is useful for business intelligence and machine learning analysis. What You Will LearnInstall, manage, and troubleshoot Big Data Clusters in cloud or on-premise environmentsAnalyze large volumes of data directly from SQL Server and/or Apache SparkManage data stored in HDFS from SQL Server as if it wererelational dataImplement advanced analytics solutions through machine learning and AIExpose different data sources as a single logical source using data virtualizationWho This Book Is ForData engineers, data scientists, data architects, and database administrators who want to employ data virtualization and big data analytics in their environments
Erscheint lt. Verlag 23.5.2020
Zusatzinfo XVII, 260 p. 199 illus.
Sprache englisch
Themenwelt Informatik Datenbanken SQL Server
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Software Entwicklung
Schlagworte Apache Spark • Artificial Intelligence (AI) • Big Data • Data Lake • Data Virtualization • Docker • HDFS • Kubernetes • Linux • machine learning • MongoDB • PolyBase • SQL Server • SQL Server 2019
ISBN-10 1-4842-5985-8 / 1484259858
ISBN-13 978-1-4842-5985-6 / 9781484259856
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
A Practical Guide to Analyzing Performance in SQL Server and Azure …

von Thomas LaRock; Enrico van de Laar

eBook Download (2023)
Apress (Verlag)
62,99