Web Recommendations Systems - K. R. Venugopal, K. C. Srikantaiah, Sejal Santosh Nimbhorkar

Web Recommendations Systems (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
XXI, 164 Seiten
Springer Singapore (Verlag)
978-981-15-2513-1 (ISBN)
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book focuses on Web recommender systems, offering an overview of approaches to develop these state-of-the-art systems. It also presents algorithmic approaches in the field of Web recommendations by extracting knowledge from Web logs, Web page content and hyperlinks. Recommender systems have been used in diverse applications, including query log mining, social networking, news recommendations and computational advertising, and with the explosive growth of Web content, Web recommendations have become a critical aspect of all search engines.
 
The book discusses how to measure the effectiveness of recommender systems, illustrating the methods with practical case studies. It strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with valuable insights into Web recommender systems.


Dr. K R Venugopal is the Vice Chancellor of Bangalore University. He holds eleven degrees, including a Ph.D. in Computer Science Engineering from IIT-Madras, Chennai and a Ph.D. in Economics from Bangalore University. He also has degrees in Law, Mass Communication, Electronics, Economics, Business Finance, Computer Science, Public Relations and Industrial Relations. He has authored and edited 68 books and published more than 800 papers in refereed international journals and international conferences. Dr. Venugopal was a postdoctoral research scholar at the University of Southern California, USA. He has been conferred with IEEE fellow and ACM Distinguished Educator for his contributions to computer science engineering and electrical engineering education.
Dr. K C Srikantaiah is a Professor at the Department of Computer Science and Engineering at SJB Institute of Technology, Bangalore, India. He received his B.E. from Bangalore Institute of Technology, M.E. from University Visvesvaraya College of Engineering, Bangalore, in 2002 and Ph.D. degree in Computer Science and Engineering from Bangalore University in 2014. He has published 20 research papers and authored a book on Web mining algorithms. His research interests include data mining, Web mining, big data analytics, cloud analytics and the Semantic Web.
Dr. Sejal Santosh Nimbhorkar is an Associate Professor at B N M Institute of Technology. She has more than 15 years of industry, research and teaching experience. She holds M.E. and B.E. degrees in Computer Science and Engineering from University Visvesvaraya College of Engineering and Gujarat University, respectively. She has published 18 papers in refereed international journals and international conferences. She received an outstanding paper award at the 2015 European Conference on Data Mining. Dr. Nimbhorkar has also received project grants from Karnataka State Council for Science and Technology (KSCST). Her research interests include mining, Web mining, sentiment analysis and IoT.

This book focuses on Web recommender systems, offering an overview of approaches to develop these state-of-the-art systems. It also presents algorithmic approaches in the field of Web recommendations by extracting knowledge from Web logs, Web page content and hyperlinks. Recommender systems have been used in diverse applications, including query log mining, social networking, news recommendations and computational advertising, and with the explosive growth of Web content, Web recommendations have become a critical aspect of all search engines. The book discusses how to measure the effectiveness of recommender systems, illustrating the methods with practical case studies. It strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with valuable insights into Web recommender systems.
Erscheint lt. Verlag 2.3.2020
Zusatzinfo XXI, 164 p. 43 illus., 4 illus. in color.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
Schlagworte BGCAP • data structures • MPC-LSW algorithm • WCP-CMA • WDICS • Web data extraction • Web recommendations systems
ISBN-10 981-15-2513-7 / 9811525137
ISBN-13 978-981-15-2513-1 / 9789811525131
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99