Citation Analysis and Dynamics of Citation Networks (eBook)
XIV, 121 Seiten
Springer International Publishing (Verlag)
978-3-030-28169-4 (ISBN)
This book deals with the science of science by applying network science methods to citation networks and uniquely presents a physics-inspired model of citation dynamics. This stochastic model of citation dynamics is based on a well-known copying or recursive search mechanism. The measurements covered in this text yield parameters of the model and reveal that citation dynamics of scientific papers is not linear, as was previously assumed. This nonlinearity has far-reaching consequences including non-stationary citation distributions, diverging citation trajectories of similar papers, and runaways or 'immortal papers' with an infinite citation lifespan. The author shows us that nonlinear stochastic models of citation dynamics can be the basis for a quantitative probabilistic prediction of citation dynamics of individual papers and of the overall journal impact factor. This book appeals to students and researchers from differing subject areas working in network science and bibliometrics.
Michael Golosovsky is an experimental physicist and he has been doing research and teaching physics in the Hebrew University of Jerusalem since 1988. He published more than 100 papers in the peer-reviewed journals in the fields of solid state physics, biophysics, and complex networks. During last decade he focused his attention on citation networks and brought to this interdisciplinary field his expertise in planning and performing measurements. Basing on these measurements, he succeeded in building a physical, data-based model of citation dynamics.
Erscheint lt. Verlag | 26.9.2019 |
---|---|
Reihe/Serie | SpringerBriefs in Complexity |
SpringerBriefs in Complexity | Understanding Complex Systems |
Zusatzinfo | XIV, 121 p. 53 illus., 52 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Mathematik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Wirtschaft | |
Schlagworte | analyzing citation networks • book on scientometrics • Data-driven Science, Modeling and Theory Building • growing complex network • modeling citation dynamics • network science and bibliometrics • science of science • scientific network structure • stochastic model of citation dynamics |
ISBN-10 | 3-030-28169-8 / 3030281698 |
ISBN-13 | 978-3-030-28169-4 / 9783030281694 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich