Selbstreferenz, Tarski-Sätze und die Undefinierbarkeit der arithmetischen Wahrheit. Abstrakte Semantik und algebraische Behandlung der Logik. Die beiden Sätze von Lindström

Wolfgang Stegmüller (Herausgeber)

Buch | Softcover
149 Seiten
1983 | 1984
Springer Berlin (Verlag)
978-3-540-12213-5 (ISBN)

Lese- und Medienproben

Selbstreferenz, Tarski-Sätze und die Undefinierbarkeit der arithmetischen Wahrheit. Abstrakte Semantik und algebraische Behandlung der Logik. Die beiden Sätze von Lindström -
17,95 inkl. MwSt

13. Selbstreferenz, Tarski-Sätze und die Undefinierbarkeit der Wahrheit.- 13.0. Intuitive Vorbetrachtungen.- 13.1 Die Minimalsysteme So, SoL und SP.- 13.2 Miniaturfassungen der Theoreme von Tarski und Gödel.- 13.3 Vorbereitung für höhere Systeme: Normbildung mittels Gödel-Entsprechungen und semantische Normalität.- 13.4 Das arithmetische System SAr und die arithmetische Undefinierbarkeit der arithmetischen Wahrheit.- Anhang 1. Henkin-Sätze und semantische Konsistenz.- Anhang 2. Diagonalisierung versus Normbildung.- 14. Abstrakte Semantik: Semantische Strukturen und ihre Isomorphie-Arten.- 14.0 Vorbemerkung.- 14.1 Abstrakte Bewertungs- und Interpretationssemantik.- 14.1.1 Motivation und intuitive Einführung.- 14.1.2 Symbolmengen und Sprachen erster Stufe im Rahmen der abstrakten Semantik.- 14.1.3 Gewöhnhche und volle semantische Strukturen.- 14.1.4 Abstrakte Bewertungssemantik. Modellbeziehung und logische Folgerung.- 14.1.5 Das Lemma über Kontextfreiheit (Koinzidenzlemma).- 14.1.6 Das Substitutionslemma.- 14.1.7 Reine Interpretationssemantik.- 14.2 Elemente der abstrakten Defmitionstheorie.- 14.2.1 Definitionen bezüglich Satzmengen.- 14.2.2 Definitionsmengen. Die eindeutige Existenz von Defmitionserweiterungen.- 14.2.3 Das Theorem über Eliminierbarkeit und Nichtkreativität.- 14.2.4 Informeller und abstrakter Defmitionsbegriff.- 14.3 Substrukturen, Relativierungen, relationale Strukturen.- 14.3.1 S-Redukte und S-Expansionen.- 14.3.2 S-abgeschlossene Träger, Substrukturen und Superstrukturen.- 14.3.3 Die P-Relativierung einer Formel.- 14.3.4 Das Relativierungstheorem.- 14.3.5 Relationale Strukturen und das Relationalisierungstheorem.- 14.4 Elementare Äquivalenz und Isomorphie-Arten.- 14.4.1 Isomorphe Strukturen.- 14.4.2 Das Isomorphielemma.- 14.4.3Elementar äquivalente Strukturen. Die semantische Theorie einer Struktur.- 14.4.4 Isomorphie, elementare Äquivalenz, Defmitionserweiterungen und relationale Strukturen.- 14.4.5 Präpartielle Isomorphismen.- 14.4.6 Endlich isomorphe Strukturen.- 14.4.7 Partiell isomorphe Strukturen.- 14.4.8 m-isomorphe Strukturen.- 14.4.9 Quantorenrang.- 14.4.10 Der Zusammenhang von m-Isomorphie und Quantorenrang.- 14.4.11 Die Beziehungen zwischen den verschiedenen Isomorphie-Arten und der elementaren Äquivalenz.- 14.5 Der Satz von Fraissé.- 14.5.1 Intuitive Motivation und Formulierung.- 14.5.2 Reduktion auf den relationalen Fall.- 14.5.3 Beweis der ersten Hälfte des Theorems von Fraissé.- 14.5.4 Beweis der zweiten Hälfte des Theorems von Fraissé.- 15. Auszeichnung der Logik erster Stufe: Die Sätze von Lindström.- 15.1 Abstrakte logische Systeme.- 15.2 Der erste Satz von Lindström.- 15.3 Der zweite Satz von Lindström.- Anhang. Zum Satz von Trachtenbrot.- Bibliographie.- Autorenregister.- Verzeichnis der Symbole und Abkürzungen.

Erscheint lt. Verlag 1.11.1983
Reihe/Serie Probleme und Resultate der Wissenschaftstheorie und Analytischen Philosophie
Strukturtypen der Logik
Zusatzinfo 149 S.
Verlagsort Berlin
Sprache deutsch
Maße 155 x 235 mm
Gewicht 253 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Logik / Mengenlehre
Schlagworte Analytische Philosophie • Äquivalenz • Beweis • Lemma • Logik • Relativierung • Sätze von Lindström • Tarski • Wahrheit • Wissenschaftstheorie
ISBN-10 3-540-12213-3 / 3540122133
ISBN-13 978-3-540-12213-5 / 9783540122135
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich