Representations of Reductive p-adic Groups -

Representations of Reductive p-adic Groups (eBook)

International Conference, IISER, Pune, India, 2017
eBook Download: PDF
2019 | 1st ed. 2019
XIII, 289 Seiten
Springer Singapore (Verlag)
978-981-13-6628-4 (ISBN)
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book consists of survey articles and original research papers in the representation theory of reductive p-adic groups. In particular, it includes a survey by Anne-Marie Aubert on the enormously influential local Langlands conjectures. The survey gives a precise and accessible formulation of many aspects of the conjectures, highlighting recent refinements, due to the author and her collaborators, and their current status. It also features an extensive account by Colin Bushnell of his work with Henniart on the fine structure of the local Langlands correspondence for general linear groups, beginning with a clear overview of Bushnell-Kutzko's construction of cuspidal types for such groups. The remaining papers touch on a range of topics in this active area of modern mathematics: group actions on root data, explicit character formulas, classification of discrete series representations, unicity of types, local converse theorems, completions of Hecke algebras, p-adic symmetric spaces. All meet a high level of exposition. The book should be a valuable resource to graduate students and experienced researchers alike.



ANNE-MARIE AUBERT is Research Director in Mathematics at the Centre National de la Recherche Scientifique (CNRS) at the Institut Mathématiques de Jussieu Paris Rive-Gauche, Paris, France. She is a member of the Comité National de la Recherche Scientifique, and has served on the editorial board of the Bulletin and the Memoirs of the French Mathematical Society. 

MANISH MISHRA is Assistant Professor of Mathematics at the Indian Institute of Science Education and Research (IISER), Pune, India. He previously held postdoctoral positions at the Heidelberg University and the Hebrew University of Jerusalem. He completed his BTech at the Indian Institute of Technology Kanpur and his PhD at Purdue University, USA. 

ALAN ROCHE is Associate Professor of Mathematics at the University of Oklahoma, USA. He previously held visiting positions at Purdue University and Oklahoma State University, USA. 

STEVEN SPALLONE is Associate Professor of Mathematics at the Indian Institute of Science Education and Research (IISER), Pune, India. He graduated from the University of Pennsylvania and completed his PhD at the University of Chicago, USA, in 1998 and 2004, respectively. His research interests include number theory and representation theory.


This book consists of survey articles and original research papers in the representation theory of reductive p-adic groups. In particular, it includes a survey by Anne-Marie Aubert on the enormously influential local Langlands conjectures. The survey gives a precise and accessible formulation of many aspects of the conjectures, highlighting recent refinements, due to the author and her collaborators, and their current status. It also features an extensive account by Colin Bushnell of his work with Henniart on the fine structure of the local Langlands correspondence for general linear groups, beginning with a clear overview of Bushnell-Kutzko's construction of cuspidal types for such groups. The remaining papers touch on a range of topics in this active area of modern mathematics: group actions on root data, explicit character formulas, classification of discrete series representations, unicity of types, local converse theorems, completions of Hecke algebras, p-adic symmetric spaces. All meet a high level of exposition. The book should be a valuable resource to graduate students and experienced researchers alike.
Erscheint lt. Verlag 16.4.2019
Reihe/Serie Progress in Mathematics
Progress in Mathematics
Zusatzinfo XIII, 289 p. 4 illus., 3 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte cuspidal representations • Harmonic Analysis • Kottwitz Homomorphism • Local Langlands correspondence • Types and Hecke Algebras
ISBN-10 981-13-6628-4 / 9811366284
ISBN-13 978-981-13-6628-4 / 9789811366284
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich