Network Data Analytics - K. G. Srinivasa, Siddesh G. M., Srinidhi H.

Network Data Analytics

A Hands-On Approach for Application Development
Buch | Softcover
XXV, 398 Seiten
2018 | 1. Softcover reprint of the original 1st ed. 2018
Springer International Publishing (Verlag)
978-3-030-08544-5 (ISBN)
117,69 inkl. MwSt
In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.

Dr. Krishnarajanagar GopalaIyengar Srinivasa is an associate professor and the head of the Department of IT at C.B.P. Government Engineering College, Jaffarpur, New Delhi, India. His other publications include the Springer book Guide to High Performance Distributed Computing. Dr. Gaddadevara Matt Siddesh is an associate professor at the Department of Information Science and Engineering at Ramaiah Institute of Technology, Bangalore, India. Srinidhi Hiriyannaiah is an assistant professor at the Department of Computer Science and Engineering at Ramaiah Institute of Technology, Bangalore, India.

Part I: Data Analytics and Hadoop.- Chapter 1. Introduction to Data Analytics.- Chapter 2. Introduction to Hadoop.- Chapter 3. Data Analytics with Map Reduce.- Part II: Tools for Data Analytics.- Chapter 4. Apache Pig.- Chapter 5. Apache Hive.- Chapter 6. Apache Spark.- Chapter 7. Apache Flume.- Chapter 8. Apache Storm.- Chapter 9. Python R.- Part III: Machine Learning for Data Analytics.- Chapter 10. Basics of Machine Learning.- Chapter 11. Linear Regression.- Chapter 12. Logistic Regression.- Chapter 13. Machine Learning on Spark.- Part IV: Exploring and Visualizing Data.- Chapter 14. Introduction to Visualization.- Chapter 15. Principles of Data Visualization.- Chapter 16. Visualization Charts.- Chapter 17. Popular Visualization Tools.- Chapter 18. Data Visualization with Hadoop.- Part V: Case Studies.- Chapter 19. Product Recommendation.- Chapter 20. Market Basket Analysis.

Erscheinungsdatum
Reihe/Serie Computer Communications and Networks
Zusatzinfo XXV, 398 p. 155 illus., 117 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 869 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Graphentheorie
Schlagworte data analytics • Data Visualization • Hadoop • High Performance Computing • machine learning algorithms
ISBN-10 3-030-08544-9 / 3030085449
ISBN-13 978-3-030-08544-5 / 9783030085445
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90